4
P/N:PM0538
REV. 2.3, DEC. 10, 2004
MX29F040
AUTOMATIC PROGRAMMING
The MX29F040 is byte programmable using the Auto-
matic Programming algorithm. The Automatic Program-
ming algorithm makes the external system do not need
to have time out sequence nor to verify the data pro-
grammed. The typical chip programming time at room
temperature of the MX29F040 is less than 4 seconds.
AUTOMATIC CHIP ERASE
The entire chip is bulk erased using 10 ms erase pulses
according to MXIC's Automatic Chip Erase algorithm.
Typical erasure at room temperature is accomplished in
less than 4 second. The Automatic Erase algorithm au-
tomatically programs the entire array prior to electrical
erase. The timing and verification of electrical erase are
controlled internally within the device.
AUTOMATIC SECTOR ERASE
The MX29F040 is sector(s) erasable using MXIC's
Auto Sector Erase algorithm. Sector erase modes
allow sectors of the array to be erased in one erase
cycle. The Automatic Sector Erase algorithm
automatically programs the specified sector(s) prior to
electrical erase. The timing and verification of
electrical erase are controlled internally within the
device.
AUTOMATIC PROGRAMMING ALGORITHM
MXIC's Automatic Programming algorithm require the user
to only write program set-up commands (including 2 un-
lock write cycle and A0H) and a program command (pro-
gram data and address). The device automatically times
the programming pulse width, provides the program veri-
fication, and counts the number of sequences. A status
bit similar to DATA polling and a status bit toggling be-
tween consecutive read cycles, provide feedback to the
user as to the status of the programming operation.
AUTOMATIC ERASE ALGORITHM
MXIC's Automatic Erase algorithm requires the user to
write commands to the command register using stand-
ard microprocessor write timings. The device will auto-
matically pre-program and verify the entire array. Then
the device automatically times the erase pulse width,
provides the erase verification, and counts the number
of sequences. A status bit toggling between consecu-
tive read cycles provides feedback to the user as to the
status of the programming operation.
Register contents serve as inputs to an internal state-
machine which controls the erase and programming cir-
cuitry. During write cycles, the command register inter-
nally latches address and data needed for the program-
ming and erase operations. During a system write cycle,
addresses are latched on the falling edge of WE or CE,
whichever happens later, and data are latched on the
rising edge of WE or CE, whichever happens first.
MXIC's Flash technology combines years of EPROM
experience to produce the highest levels of quality, relia-
bility, and cost effectiveness. The MX29F040 electrically
erases all bits simultaneously using Fowler-Nordheim
tunneling. The bytes are programmed by using the
EPROM programming mechanism of hot electron injec-
tion.
During a program cycle, the state-machine will control
the program sequences and command register will not
respond to any command set. During a Sector Erase
cycle, the command register will only respond to Erase
Suspend command. After Erase Suspend is completed,
the device stays in read mode. After the state machine
has completed its task, it will allow the command regis-
ter to respond to its full command set.