
’F181 Operation Table
Logic
(M
e
H)
Arithmetic
(M
e
L, C
0
e
Inactive)
Arithmetic
(M
e
L, C
0
e
Active)
S
0
S
1
S
2
S
3
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
A
A minus 1
A
#
B minus 1
A
#
B minus 1
minus 1 (2s comp.)
A plus (A
a
B)
A
#
B plus (A
a
B)
A minus B minus 1
A
a
B
A plus (A
a
B)
A plus B
A
#
B plus (A
a
B)
A
a
B
A plus A (2
c
A)
A plus A
#
B
A plus A
#
B
A
A
A
#
B
A
a
B
Logic ‘‘1’’
A
a
B
B
A
Z
B
A
a
B
A
#
B
A
Z
B
B
A
a
B
Logic ‘‘0’’
A
#
B
A
#
B
A
A
#
B
A
#
B
Zero
A plus (A
a
B) plus 1
A
#
B plus (A
a
B) plus 1
A minus B
A
a
B plus 1
A plus (A
a
B plus 1
A plus B plus 1
A
#
B plus (A
a
B) plus 1
A
a
B plus 1
A plus A (2
c
A) plus 1
A plus A
#
B plus 1
A plus A
#
B plus 1
A plus 1
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
A
A
A plus 1
A
a
B plus 1
A
a
B plus 1
Zero
A plus A
#
B plus 1
A
#
B plus (A
a
B) plus 1
A minus B
A
#
B
A plus A
#
B plus 1
A plus B plus 1
A
#
B plus (A
a
B) plus 1
A
#
B
A plus A (2
c
A) plus 1
A plus (A
a
B) plus 1
A plus (A
a
B) plus 1
A
A
a
B
A
#
B
Logic ‘‘0’’
A
#
B
B
A
Z
B
A
#
B
A
a
B
A
Z
B
B
A
#
B
Logic ‘‘1’’
A
a
B
A
a
B
A
A
a
B
A
a
B
minus 1 (2s comp.)
A plus (A
#
B)
A
#
B plus (A
a
B)
A minus B minus 1
A
#
B minus 1
A plus A
#
B
A plus B
A
#
B plus (A
a
B)
A
#
B minus 1
A plus A (2
c
A)
A plus (A
a
B)
A plus (A
a
B)
A minus 1
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
A
A minus 1
A
#
B minus 1
A
#
B minus 1
minus 1 (2s comp.)
A plus (A
a
B)
A
#
B plus (A
a
B)
A plus B
A
a
B
A plus (A
a
B)
A minus B minus 1
A
#
B plus (A
a
B)
A
a
B
A plus A (2
c
A)
A plus A
#
B
A plus A
#
B
A
A
A
a
B
A
#
B
Logic ‘‘1’’
A
#
B
B
A
Z
B
A
a
B
A
a
B
A
Z
B
B
A
a
B
Logic ‘‘0’’
A
#
B
A
#
B
A
A
#
B
A
#
B
Zero
A plus (A
a
B) plus 1
A
#
B plus (A
a
B) plus 1
A plus B plus 1
A
a
B plus 1
A plus (A
a
B) plus 1
A minus B
A
#
B plus (A
a
B) plus 1
A
a
B plus 1
A plus A (2
c
A) plus 1
A plus A
#
B plus 1
A plus A
#
B plus 1
A plus 1
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
A
A
A plus 1
A
a
B plus 1
A
a
B plus 1
Zero
A plus A
#
B plus 1
A
#
B plus (A
a
B) plus 1
A plus B plus 1
A
#
B
A plus A
#
B plus 1
A minus B
A
#
B plus (A
a
B) plus 1
A
#
B
A plus A (2
c
A) plus 1
A plus (A
a
B) plus 1
A plus (A
a
B) plus 1
A
A
#
B
A
a
B
Logic ‘‘0’’
A
a
B
B
A
Z
B
A
#
B
A
#
B
A
Z
B
B
A
#
B
Logic ‘‘1’’
A
a
B
A
a
B
A
A
a
B
A
a
B
minus 1 (2s comp.)
A plus A
#
B
A
#
B plus (A
a
B)
A plus B
A
#
B minus 1
A plus A
#
B
A minus B minus 1
A
#
B plus (A
a
B)
A
#
B minus 1
A plus A (2
c
A)
A plus (A
a
B)
A plus (A
a
B)
A minus 1
a. All Input Data Inverted
b. All Input Data True
c. A Input Data Inverted;
B Input Data True
d. A Input Data True;
B Input Date Inverted
3