1997 Jul 01
44
Philips Semiconductors
Preliminary specication
I2C-bus controlled economy PAL/NTSC
and NTSC TV-processors
TDA837x family
39. At a chrominance input voltage of 660 mV (p-p) [colour bar with 75% saturation i.e. burst signal amplitude
300 mV (p-p)] the dynamic range of the ACC is +6 and
20 dB.
40. The ACL function is available in the NTSC devices and is active in the PAL/NTSC devices when NTSC signals are
received. The ACL circuit reduces the gain of the chroma amplifier for input signals with a chroma-to-burst ratio which
exceeds a value of 3.0.
41. All frequency variations are referenced to 3.58 or 4.43 MHz carrier frequency. All oscillator specifications are
measured with the Philips crystal series 9922 520 with a series capacitor of 18 pF. The oscillator circuit is rather
insensitive to the spurious responses of the crystal. As long as the resonance resistance of the 3rd overtone is higher
than that of the fundamental frequency the oscillator will operate at the correct frequency. Typical parameters for the
above mentioned crystals are as follows:
a) Load resonance frequency f0 = 4.433619 or 3.579545 MHz (CL = 20 pF).
b) Motional capacitance Cmot = 20.6 fF (4.43 MHz crystal) or 14.7 fF (3.58 MHz crystal).
c) Parallel capacitance Cpar = 5 pF for both crystals.
The minimum detuning range can only be specified if both the IC and the crystal tolerances are known and the figures
given are therefore valid for the specified crystal series. In this figure tolerances of the crystal with respect to nominal
frequency, motional capacitance and ageing have been taken into account and have been counted for gaussian
addition. Whenever different typical crystal parameters are used the following equation might be helpful for
calculating the impact on the detuning capabilities:
The detuning range divided by
The resulting detuning range should be corrected for temperature shift and supply deviation of both the IC and the
crystal. The actual series capacitance in the application should be CL = 18 pF to account for parasitic capacitances
on and off chip. For 3-norma applications with 2 crystals connected to one pin the maximum parasitic capacitance of
the crystal pin should not exceed 15 pF.
42. The (R
Y) and (B Y) signals are demodulated with a phase difference of the reference carrier of 90° and a gain
ratio
.
The output signal amplitudes of the TDA8373 and TDA8377A have twice the value. This is necessary to compensate
for the gain of the baseband delay line (TDA4665). The matrixing to the required signals is realized in the control part.
43. This parameter indicates the bandwidth of the complete chrominance circuit including the chrominance band-pass
filter. The bandwidth of the low-pass filter of the demodulator is approximately 1 MHz.
44. The sub-carrier output signal can be used as reference signal of external comb filter ICs (all ICs) and as a reference
signal for the SECAM decoder TDA8395 (only TDA8374 and TDA8375). In the latter types the output signal is
continuously available when PAL or NTSC signals are detected. When the system identifies a SECAM signal the
reference signal is only present in the vertical retrace period. This to prevent interference between the reference
signal and the SECAM input signal. For comb filter applications the DC load on this pin should be limited to 50
A to
avoid problems with SECAM identification.
45. At nominal setting of the gain control. When this amplitude is exceeded the signal will be clipped.
46. When the reproduction of 4 : 3 pictures on a 16 : 9 picture tube is realized by means of a reduction of the horizontal
scan amplitude, the edges of the picture may be slightly disturbed. This effect can be prevented by adding additional
blanking to the RGB signals. This blanking pulse is derived from the horizontal oscillator and is directly related to the
incoming video signal (independent of the flyback pulse). The additional blanking overlaps the normal blanking signal
with approximately 1
s on both sides. This blanking is activated with the HBL bit (only in the TDA8375 and
TDA8377).
47. Signal-to-noise ratio (S/N) is specified as a peak-to-peak signal with respect to RMS noise (bandwidth 5 MHz).
C
mot
1
C
par
C
L
-----------
+
2
-------------------------------
BY
–
()
RY
–
()
---------------------
1.78
=