參數(shù)資料
型號: A42MX16-2VQG100I
廠商: Microsemi SoC
文件頁數(shù): 132/142頁
文件大?。?/td> 0K
描述: IC FPGA MX SGL CHIP 24K 100-VQFP
標準包裝: 90
系列: MX
輸入/輸出數(shù): 83
門數(shù): 24000
電源電壓: 3 V ~ 3.6 V,4.5 V ~ 5.5 V
安裝類型: 表面貼裝
工作溫度: -40°C ~ 85°C
封裝/外殼: 100-TQFP
供應商設(shè)備封裝: 100-VQFP(14x14)
40MX and 42MX FPGA Families
Re vi s i on 11
1-5
uncommitted and can be assigned during routing. Each output segment spans four channels (two above
and two below), except near the top and bottom of the array, where edge effects occur. Long vertical
tracks contain either one or two segments. An example of vertical routing tracks and segments is shown
Antifuse Structures
An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic
device results in highly testable structures as well as efficient programming algorithms. There are no pre-
existing connections; temporary connections can be made using pass transistors. These temporary
connections can isolate individual antifuses to be programmed and individual circuit structures to be
tested, which can be done before and after programming. For instance, all metal tracks can be tested for
continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.
Clock Networks
The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK
network by being routed through the CLKBUF buffer.
In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA
and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal
from any of the following (Figure 1-7 on page 1-6):
Externally from the CLKA pad, using CLKBUF buffer
Externally from the CLKB pad, using CLKBUF buffer
Internally from the CLKINTA input, using CLKINT buffer
Internally from the CLKINTB input, using CLKINT buffer
The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal
clock track are located in each horizontal routing channel.
Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock
networks.
The A42MX36 device has four additional register control resources, called quadrant clock networks
(Figure 1-8 on page 1-6). Each quadrant clock provides a local, high-fanout resource to the contiguous
logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O
Figure 1-6
MX Routing Structure
Segmented
Horizontal
Routing
Logic
Modules
Antifuses
Vertical Routing Tracks
相關(guān)PDF資料
PDF描述
HSC49DRYH-S13 CONN EDGECARD 98POS .100 EXTEND
951-015-010R011 BACKSHELL 15POS 60DEG PLASTIC
ABC49DRYN-S13 CONN EDGECARD 98POS .100 EXTEND
ABC49DRYH-S13 CONN EDGECARD 98POS .100 EXTEND
EMC60DRTN CONN EDGECARD 120POS .100 EXTEND
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
A42MX16-3BG100 制造商:未知廠家 制造商全稱:未知廠家 功能描述:40MX and 42MX FPGA Families
A42MX16-3BG100A 制造商:未知廠家 制造商全稱:未知廠家 功能描述:40MX and 42MX FPGA Families
A42MX16-3BG100B 制造商:未知廠家 制造商全稱:未知廠家 功能描述:40MX and 42MX FPGA Families
A42MX16-3BG100ES 制造商:未知廠家 制造商全稱:未知廠家 功能描述:40MX and 42MX FPGA Families
A42MX16-3BG100I 制造商:未知廠家 制造商全稱:未知廠家 功能描述:40MX and 42MX FPGA Families