AD5308/AD5318/AD5328
Rev. F | Page 19 of 28
MICROPROCESSOR INTERFACE
ADSP-2101/ADSP-2103-to-
AD5308/AD5318/AD5328 INTERFACE
Figure 36 shows a serial interface between the AD5308/AD5318/
AD5328 and the ADSP-2101/ADSP-2103. The ADSP-2101/
ADSP-2103 should be set up to operate in the SPORT transmit
alternate framing mode. The ADSP-2101/ADSP-2103 SPORT is
programmed through the SPORT control register and should be
configured as follows: internal clock operation, active low framing,
and 16-bit word length. Transmission is initiated by writing a word
to the Tx register after the SPORT has been enabled. The data is
clocked out on each rising edge of the DSP’s serial clock and
clocked into the AD5308/AD5318/ AD5328 on the falling edge
of the DAC’s SCLK.
02812-036
ADSP-2101/
ADSP-2103*
*ADDITIONAL PINS OMITTED FOR CLARITY
TFS
AD5308/
AD5318/
AD5328*
SYNC
DT
SCLK
DIN
Figure 36. ADSP-2101/ADSP-2103-to-AD5308/AD5318/AD5328 Interface
68HC11/68L11-to-AD5308/AD5318/AD5328
INTERFACE
Figure 37 shows a serial interface between the AD5308/AD5318/
AD5328 and the 68HC11/68L11 microcontroller. SCK of the
68HC11/68L11 drives the SCLK of the AD5308/AD5318/AD5328,
and the MOSI output drives the serial data line (DIN) of the DAC.
The sync signal is derived from a port line (PC7). The set up
conditions for the correct operation of this interface are as follows:
the 68HC11/68L11 should be configured so that its CPOL bit is a
0 and its CPHA bit is a 1. When data is being transmitted to the
DAC, the sync line is taken low (PC7). When the 68HC11/ 68L11
is configured as just described, data appearing on the MOSI output
is valid on the falling edge of SCK. Serial data from the 68HC11/
68L11 is transmitted in 8-bit bytes with only eight falling clock
edges occurring in the transmit cycle. Data is transmitted MSB
first. To load data to the AD5308/AD5318/AD5328, PC7 is left
low after the first eight bits are transferred, and a second serial
write operation is performed to the DAC. PC7 is taken high at
the end of this procedure.
02812-037
68HC11/68L11
*ADDITIONAL PINS OMITTED FOR CLARITY
PC7
AD5308/
AD5318/
AD5328*
SYNC
MOSI
SCK
DIN
SCLK
Figure 37. 68HC11/68L11-to-AD5308/AD5318/ AD5328 Interface
80C51/80L51-to-AD5308/AD5318/AD5328
INTERFACE
Figure 38 shows a serial interface between the AD5308/AD5318/
AD5328 and the 80C51/80L51 microcontroller. The setup for
the interface is as follows: TxD of the 80C51/80L51 drives SCLK
of the AD5308/AD5318/AD5328, while RxD drives the serial data
line of the part. The SYNC signal is again derived from a bit
programmable pin on the port. In this case, port line P3.3 is used.
When data is transmitted to the AD5308/AD5318/AD5328, P3.3
is taken low. The 80C51/80L51 transmits data only in 8-bit bytes;
thus, only eight falling clock edges occur in the transmit cycle. To
load data to the DAC, P3.3 is left low after the first eight bits are
transmitted, and a second write cycle is initiated to transmit the
second byte of data. P3.3 is taken high following the completion
of this cycle. The 80C51/80L51 outputs the serial data in a format
that has the LSB first. The AD5308/AD5318/AD5328 requires
its data with the MSB as the first bit received. The 80C51/80L51
transmit routine should take this into account.
02812-038
80C51/80L51*
*ADDITIONAL PINS OMITTED FOR CLARITY
P3.3
AD5308/
AD5318/
AD5328*
SYNC
RxD
TxD
DIN
SCLK
Figure 38. 80C51/80L51-to-AD5308/AD5318/AD5328 Interface