–VS
參數(shù)資料
型號: AD629BR-REEL
廠商: Analog Devices Inc
文件頁數(shù): 4/16頁
文件大?。?/td> 0K
描述: IC AMP DIFF 25MA LDRIFT 8SOIC
設計資源: Measuring -48 V High-Side Current Using AD629, AD8603, AD780, and AD7453 (CN0100)
標準包裝: 2,500
放大器類型: 差分
電路數(shù): 1
轉(zhuǎn)換速率: 2.1 V/µs
-3db帶寬: 500kHz
電壓 - 輸入偏移: 100µV
電流 - 電源: 900µA
電流 - 輸出 / 通道: 25mA
電壓 - 電源,單路/雙路(±): 5 V ~ 36 V,±2.5 V ~ 18 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 8-SOIC(0.154",3.90mm 寬)
供應商設備封裝: 8-SO
包裝: 帶卷 (TR)
AD629
Rev. C | Page 12 of 16
ANALOG POWER
SUPPLY
DIGITAL
POWER SUPPLY
0.1F
+IN
–IN
–VS
VIN1
VIN2
VDD
OUTPUT
AGND
GND
MICROPROCESSOR
DGND
+VS
AD629
AD7892-2
REF(–) REF(+)
6
7
14
4
1
3
2
6
4
1
5
12
+5V
GND
+5V
GND
–5V
007
83-
032
Figure 34. Optimal Grounding Practice for a Bipolar Supply Environment
with Separate Analog and Digital Supplies
POWER SUPPLY
VIN1
VIN2
VDD
AGND DGND
ADC
0.1F
+IN
–IN
+VS
OUTPUT
–VS
AD629
REF(–) REF(+)
4
7
3
2
6
1
5
VDD
GND
MICROPROCESSOR
+5V
GND
0.1F
00
783
-0
33
Figure 35. Optimal Ground Practice in a Single-Supply Environment
If there is only a single power supply available, it must be shared
by both digital and analog circuitry. Figure 35 shows how to
minimize interference between the digital and analog circuitry.
In this example, the ADC’s reference is used to drive Pin REF(+)
and Pin REF(–). This means that the reference must be capable
of sourcing and sinking a current equal to VCM/200 kΩ. As in
the previous case, separate analog and digital ground planes
should be used (reasonably thick traces can be used as an
alternative to a digital ground plane). These ground planes
should connect at the power supply’s ground pin. Separate
traces (or power planes) should run from the power supply to
the supply pins of the digital and analog circuits. Ideally, each
device should have its own power supply trace, but these can be
shared by a number of devices, as long as a single trace is not
used to route current to both digital and analog circuitry.
USING A LARGE SENSE RESISTOR
Insertion of a large value shunt resistance across the input pins,
Pin 2 and Pin 3, will imbalance the input resistor network,
introducing a common-mode error. The magnitude of the error
will depend on the common-mode voltage and the magnitude
of RSHUNT.
Table 5 shows some sample error voltages generated by a
common-mode voltage of 200 V dc with shunt resistors from
20 Ω to 2000 Ω. Assuming that the shunt resistor is selected to
use the full ±10 V output swing of the AD629, the error voltage
becomes quite significant as RSHUNT increases.
Table 5. Error Resulting from Large Values of RSHUNT
(Uncompensated Circuit)
RS (Ω)
Error VOUT (V)
Error Indicated (mA)
20
0.01
0.5
1000
0.498
2000
1
0.5
To measure low current or current near zero in a high common-
mode environment, an external resistor equal to the shunt
resistor value can be added to the low impedance side of the
shunt resistor, as shown in Figure 36.
REF (–)
REF (+)
–VS
+VS
VOUT
NC
–IN
+IN
RSHUNT
RCOMP
ISHUNT
0.1F
NC = NO CONNECT
21.1k
380k
20k
380k
AD629
1
2
3
4
8
7
6
5
00
78
3-
03
4
Figure 36. Compensating for Large Sense Resistors
OUTPUT FILTERING
A simple 2-pole, low-pass Butterworth filter can be implemented
using the OP177 after the AD629 to limit noise at the output, as
shown in Figure 37. Table 6 gives recommended component
values for various corner frequencies, along with the peak-to-
peak output noise for each case.
REF (–)
REF (+)
–VS
+VS
VOUT
NC
–IN
+IN
0.1F
NC = NO CONNECT
21.1k
380k
20k
380k
AD629
1
2
3
4
8
7
6
5
00783
-035
R1
R2
C1
C2
OP177
Figure 37. Filtering of Output Noise Using a 2-Pole Butterworth Filter
Table 6. Recommended Values for 2-Pole Butterworth Filter
Corner Frequency
R1
R2
C1
C2
Output Noise (p-p)
No Filter
3.2 mV
50 kHz
2.94 kΩ ± 1%
1.58 kΩ ± 1%
2.2 nF ± 10%
1 nF ± 10%
1 mV
5 kHz
2.94 kΩ ± 1%
1.58 kΩ ± 1%
22 nF ± 10%
10 nF ± 10%
0.32 mV
500 Hz
2.94 kΩ ± 1%
1.58 kΩ ± 1%
220 nF ± 10%
0.1 μF ± 10%
100 μV
50 Hz
2.7 kΩ ± 10%
1.5 kΩ ± 10%
2.2 μF ± 20%
1 μF ± 20%
32 μV
相關PDF資料
PDF描述
MTMM-106-09-T-D-090 CONN HEADER 12POS 2MM DL TIN
02343.15MXBP FUSE 5X20 C/CODE M 3.15A/250V
AD797AR-REEL7 IC OPAMP GP 110MHZ ULDIST 8SOIC
FWJ-06-01-T-S CONN HEADER .156" 6POS SNGL TIN
LT2079CS#TRPBF IC OPAMP MICROPOWER QUAD 14SOIC
相關代理商/技術參數(shù)
參數(shù)描述
AD629BR-REEL7 功能描述:IC AMP DIFF 25MA LDRIFT 8SOIC RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:150 系列:- 放大器類型:音頻 電路數(shù):2 輸出類型:- 轉(zhuǎn)換速率:5 V/µs 增益帶寬積:12MHz -3db帶寬:- 電流 - 輸入偏壓:100nA 電壓 - 輸入偏移:500µV 電流 - 電源:6mA 電流 - 輸出 / 通道:50mA 電壓 - 電源,單路/雙路(±):4 V ~ 32 V,±2 V ~ 16 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-TSSOP(0.173",4.40mm 寬) 供應商設備封裝:8-TSSOP 包裝:管件
AD629BRZ 功能描述:IC AMP DIFF 25MA LDRIFT 8SOIC RoHS:是 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:2,500 系列:- 放大器類型:通用 電路數(shù):4 輸出類型:- 轉(zhuǎn)換速率:0.6 V/µs 增益帶寬積:1MHz -3db帶寬:- 電流 - 輸入偏壓:45nA 電壓 - 輸入偏移:2000µV 電流 - 電源:1.4mA 電流 - 輸出 / 通道:40mA 電壓 - 電源,單路/雙路(±):3 V ~ 32 V,±1.5 V ~ 16 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:14-TSSOP(0.173",4.40mm 寬) 供應商設備封裝:14-TSSOP 包裝:帶卷 (TR) 其它名稱:LM324ADTBR2G-NDLM324ADTBR2GOSTR
AD629BRZ-R7 功能描述:IC AMP DIFF 25MA LDRIFT 8SOIC RoHS:是 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:150 系列:- 放大器類型:音頻 電路數(shù):2 輸出類型:- 轉(zhuǎn)換速率:5 V/µs 增益帶寬積:12MHz -3db帶寬:- 電流 - 輸入偏壓:100nA 電壓 - 輸入偏移:500µV 電流 - 電源:6mA 電流 - 輸出 / 通道:50mA 電壓 - 電源,單路/雙路(±):4 V ~ 32 V,±2 V ~ 16 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-TSSOP(0.173",4.40mm 寬) 供應商設備封裝:8-TSSOP 包裝:管件
AD629BRZ-RL 功能描述:IC AMP DIFF 25MA LDRIFT 8SOIC RoHS:是 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:150 系列:- 放大器類型:音頻 電路數(shù):2 輸出類型:- 轉(zhuǎn)換速率:5 V/µs 增益帶寬積:12MHz -3db帶寬:- 電流 - 輸入偏壓:100nA 電壓 - 輸入偏移:500µV 電流 - 電源:6mA 電流 - 輸出 / 通道:50mA 電壓 - 電源,單路/雙路(±):4 V ~ 32 V,±2 V ~ 16 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-TSSOP(0.173",4.40mm 寬) 供應商設備封裝:8-TSSOP 包裝:管件
AD629-EVAL 制造商:Analog Devices 功能描述: