參數(shù)資料
型號: AD8138AR-EBZ
廠商: Analog Devices Inc
文件頁數(shù): 11/25頁
文件大?。?/td> 0K
描述: BOARD EVAL FOR AD8138AR
標準包裝: 1
每 IC 通道數(shù): 1 - 單
放大器類型: 差分
板類型: 裸(未填充)
已供物品:
已用 IC / 零件: 8-SOIC 封裝
AD8138
Rev. F | Page 18 of 24
When using the AD8138 in gain configurations where
G
F
R
of one feedback network is unequal to
G
F
R
of the other network, there is a differential output noise due to
input-referred voltage in the VOCM circuitry. The output noise is
defined in terms of the following feedback terms (refer to
G
F
G
R
+
=
β
1
for OUT to +IN loop, and
G
F
G
R
+
=
β
2
for +OUT to IN loop. With these defined,
β
+
β
β
=
2
1
2
1
,
2
OCM
V
nIN
dm
nOUT
V
where VnOUT, dm is the output differential noise, and
is
the input-referred voltage noise in VOCM.
COM
V
nIN
V
,
THE IMPACT OF MISMATCHES IN THE FEEDBACK
NETWORKS
As previously mentioned, even if the external feedback
networks (RF/RG) are mismatched, the internal common-mode
feedback loop still forces the outputs to remain balanced. The
amplitudes of the signals at each output remains equal and 180°
out of phase. The input-to-output differential-mode gain varies
proportionately to the feedback mismatch, but the output
balance is unaffected.
Ratio matching errors in the external resistors result in a
degradation of the circuit’s ability to reject input common-
mode signals, much the same as for a four-resistor difference
amplifier made from a conventional op amp.
In addition, if the dc levels of the input and output common-
mode voltages are different, matching errors result in a small
differential-mode output offset voltage. For the G = 1 case, with
a ground referenced input signal and the output common-mode
level set for 2.5 V, an output offset of as much as 25 mV (1% of
the difference in common-mode levels) can result if 1% tolerance
resistors are used. Resistors of 1% tolerance result in a worst-
case input CMRR of about 40 dB, worst-case differential mode
output offset of 25 mV due to 2.5 V level-shift, and no significant
degradation in output balance error.
CALCULATING AN APPLICATION CIRCUIT’S INPUT
IMPEDANCE
The effective input impedance of a circuit such as the one in
Figure 42, at +DIN and –DIN, depends on whether the amplifier is
being driven by a single-ended or differential signal source. For
balanced differential input signals, the input impedance (RIN, dm)
between the inputs (+DIN and DIN) is simply
RIN, dm =2 × RG
In the case of a single-ended input signal (for example if DIN is
grounded and the input signal is applied to +DIN), the input
impedance becomes
()
+
×
=
F
G
F
G
dm
IN
R
2
1
,
The circuit’s input impedance is effectively higher than it would
be for a conventional op amp connected as an inverter because
a fraction of the differential output voltage appears at the inputs
as a common-mode signal, partially bootstrapping the voltage
across the input resistor RG.
INPUT COMMON-MODE VOLTAGE RANGE IN
SINGLE-SUPPLY APPLICATIONS
The AD8138 is optimized for level-shifting, ground-referenced
input signals. For a single-ended input, this would imply, for
example, that the voltage at DIN in Figure 42 would be 0 V
when the amplifier’s negative power supply voltage (at V) is
also set to 0 V.
SETTING THE OUTPUT COMMON-MODE VOLTAGE
The AD8138’s VOCM pin is internally biased at a voltage
approximately equal to the midsupply point (average value of
the voltages on V+ and V). Relying on this internal bias results
in an output common-mode voltage that is within about
100 mV of the expected value.
In cases where more accurate control of the output common-
mode level is required, it is recommended that an external
source, or resistor divider (made up of 10 kΩ resistors), be used.
The output common-mode offset listed in the Specifications
section assumes the VOCM input is driven by a low impedance
voltage source.
DRIVING A CAPACITIVE LOAD
A purely capacitive load can react with the pin and bondwire
inductance of the AD8138, resulting in high frequency ringing
in the pulse response. One way to minimize this effect is to
place a small capacitor across each of the feedback resistors. The
added capacitance should be small to avoid destabilizing the
amplifier. An alternative technique is to place a small resistor in
series with the amplifier’s outputs, as shown in Figure 40.
相關(guān)PDF資料
PDF描述
VE-J5J-EY CONVERTER MOD DC/DC 36V 50W
VE-J4L-EY CONVERTER MOD DC/DC 28V 50W
VE-B1Z-EY CONVERTER MOD DC/DC 2V 20W
TL431BCPG IC VREF SHUNT PREC ADJ 8-PDIP
RYM10DRMS CONN EDGECARD 20POS .156 WW
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD8138ARM 功能描述:IC AMP DIFF LDIST LP 95MA 8MSOP RoHS:否 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:60 系列:- 類型:可變增益放大器 應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤
AD8138ARM-EBZ 功能描述:BOARD EVAL FOR AD8138ARM RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評估板 - 運算放大器 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:1 系列:-
AD8138ARM-REEL 功能描述:IC AMP DIFF LDIST LP 95MA 8MSOP RoHS:否 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:60 系列:- 類型:可變增益放大器 應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤
AD8138ARM-REEL7 功能描述:IC AMP DIFF LDIST LP 95MA 8MSOP RoHS:否 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:60 系列:- 類型:可變增益放大器 應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤
AD8138ARMZ 功能描述:IC AMP DIFF LDIST LP 95MA 8MSOP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:60 系列:- 類型:可變增益放大器 應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤