參數(shù)資料
型號: AD8310ARM-REEL7
廠商: Analog Devices Inc
文件頁數(shù): 2/24頁
文件大?。?/td> 0K
描述: IC LOGARITHMIC AMP 8-MSOP T/R
標(biāo)準(zhǔn)包裝: 1,000
類型: 對數(shù)放大器
應(yīng)用: 接收器信號強(qiáng)度指示(RSSI)
安裝類型: 表面貼裝
封裝/外殼: 8-TSSOP,8-MSOP(0.118",3.00mm 寬)
供應(yīng)商設(shè)備封裝: 8-MSOP
包裝: 帶卷 (TR)
AD8310
Rev. F | Page 10 of 24
SLOPE AND INTERCEPT CALIBRATION
All monolithic log amps from Analog Devices use precision
design techniques to control the logarithmic slope and
intercept. The primary source of this calibration is a pair of
accurate voltage references that provide supply- and
temperature-independent scaling. The slope is set to 24 mV/dB
by the bias chosen for the detector cells and the subsequent gain
of the postdetector output interface. With this slope, the full
95 dB dynamic range can be easily accommodated within the
output swing capacity, when operating from a 2.7 V supply.
Intercept positioning at 108 dBV (95 dBm re 50 Ω) has
likewise been chosen to provide an output centered in the
available voltage range.
Precise control of the slope and intercept results in a log amp
with stable scaling parameters, making it a true measurement
device as, for example, a calibrated received signal strength
indicator (RSSI). In this application, the input waveform is
invariably sinusoidal. The input level is correctly specified in
dBV. It can alternatively be stated as an equivalent power, in
dBm, but in this case, it is necessary to specify the impedance in
which this power is presumed to be measured. In RF practice, it
is common to assume a reference impedance of 50 Ω, in which
0 dBm (1 mW) corresponds to a sinusoidal amplitude of
316.2 mV (223.6 mV rms). However, the power metric is
correct only when the input impedance is lowered to 50 Ω,
either by a termination resistor added across INHI and INLO,
or by the use of a narrow-band matching network.
Note that log amps do not inherently respond to power, but to
the voltage applied to their input. The AD8310 presents a
nominal input impedance much higher than 50 Ω (typically
1 kΩ at low frequencies). A simple input matching network
can considerably improve the power sensitivity of this type of
log amp. This increases the voltage applied to the input and,
therefore, alters the intercept. For a 50 Ω reactive match, the
voltage gain is about 4.8, and the whole dynamic range moves
down by 13.6 dB. The effective intercept is a function of wave-
form. For example, a square-wave input reads 6 dB higher than
a sine wave of the same amplitude, and a Gaussian noise input
reads 0.5 dB higher than a sine wave of the same rms value.
OFFSET CONTROL
In a monolithic log amp, direct coupling is used between the
stages for several reasons. First, it avoids the need for coupling
capacitors, which typically have a chip area at least as large as
that of a basic gain cell, considerably increasing die size. Second,
the capacitor values predetermine the lowest frequency at which
the log amp can operate. For moderate values, this can be as
high as 30 MHz, limiting the application range. Third, the
parasitic back-plate capacitance lowers the bandwidth of the
cell, further limiting the scope of applications.
However, the very high dc gain of a direct-coupled amplifier
raises a practical issue. An offset voltage in the early stages of
the chain is indistinguishable from a real signal. If it were as
high as 400 μV, it would be 18 dB larger than the smallest ac
signal (50 μV), potentially reducing the dynamic range by this
amount. This problem can be averted by using a global feedback
path from the last stage to the first, which corrects this offset in
a similar fashion to the dc negative feedback applied around an
op amp. The high frequency components of the feedback signal
must, of course, be removed to prevent a reduction of the HF
gain in the forward path.
An on-chip filter capacitor of 33 pF provides sufficient suppres-
sion of HF feedback to allow operation above 1 MHz. The 3 dB
point in the high-pass response is at 2 MHz, but the usable range
extends well below this frequency. To further lower the frequency
range, an external capacitor can be added at OFLT (Pin 3). For
example, 300 pF lowers it by a factor of 10.
Operation at low audio frequencies requires a capacitor of about
1 μF. Note that this filter has no effect for input levels well above
the offset voltage, where the frequency range would extend
down to dc (for a signal applied directly to the input pins). The
dc offset can optionally be nulled by adjusting the voltage on
the OFLT pin (see the Applications Information section).
相關(guān)PDF資料
PDF描述
SY88713VKG IC POST AMP PECL LP LIMIT 10MSOP
VE-25L-MW-B1 CONVERTER MOD DC/DC 28V 100W
LTC6409IUDB#TRPBF IC AMP/DRIVER DIFF GBW 10-QFN
LTC1596-1CCSW#TR IC DAC 16BIT MULTIPLY SER 16SOIC
VE-25J-MW-B1 CONVERTER MOD DC/DC 36V 100W
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD8310ARMZ 功能描述:IC LOGARITHMIC AMP 95DB 8-MSOP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:60 系列:- 類型:可變增益放大器 應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤
AD8310ARMZ 制造商:Analog Devices 功能描述:Operational Amplifier (Op-Amp) IC
AD8310ARMZ-REEL1 制造商:AD 制造商全稱:Analog Devices 功能描述:Fast, Voltage-Out DC-440 MHz, 95 dB Logarithmic Amplifier
AD8310ARMZ-REEL7 功能描述:IC AMP LOGARITHMIC 8MSOP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:60 系列:- 類型:可變增益放大器 應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤
AD8310ARMZ-REEL71 制造商:AD 制造商全稱:Analog Devices 功能描述:Fast, Voltage-Out DC-440 MHz, 95 dB Logarithmic Amplifier