參數(shù)資料
型號(hào): AD8335-EVALZ
廠商: Analog Devices Inc
文件頁(yè)數(shù): 9/28頁(yè)
文件大?。?/td> 0K
描述: BOARD EVALUATION FOR AD8335
產(chǎn)品變化通告: AD8335 Metal Mask Change 12/Jul/2010
標(biāo)準(zhǔn)包裝: 1
系列: X-AMP®
每 IC 通道數(shù): 4 - 四
放大器類型: 可變?cè)鲆?br>
輸出類型: 差分
轉(zhuǎn)換速率: 350 V/µs
-3db帶寬: 110MHz
工作溫度: -40°C ~ 85°C
電流供應(yīng)(主 IC): 76mA
電壓 - 電源,單路/雙路(±): 4.5 V ~ 5.5 V
板類型: 完全填充
已供物品:
已用 IC / 零件: AD8335
相關(guān)產(chǎn)品: AD8335ACPZ-ND - IC AMP VGA QUAD 64LFCSP
AD8335ACPZ-REEL7-ND - IC AMP VGA QUAD 64LFCSP
AD8335ACPZ-REEL-ND - IC AMP VGA QUAD 64LFCSP
Data Sheet
AD8335
Rev. B | Page 17 of 28
PREAMP
Although the preamp signal path is fully differential, the design is
optimized for single-ended input drive and signal source resistance
matching. Thus, the negative input to the differential preamplifier
PMDx pins must be ac-grounded to provide a balanced differential
signal at the PrA outputs. Detailed information regarding the
preamplifier architecture is found in the LNA section of the
AD8331/AD8332 data sheet.
The preamplifier consists of a fixed gain amplifier with differential
outputs. With the negative output available and a fixed gain of
8 (18.06 dB), an active input termination is synthesized by
connecting a feedback resistor between the negative output
and the positive input, Pin PIPx. This technique is well known
and results in the input resistance shown in Equation 2.
)
2
/
1
(
A
R
FB
IN
+
=
(2)
where A/2 is the single-ended gain, or the gain from the PIPx
inputs to the PONx outputs. Since the amplifier has a gain of ×8
from its input to its differential output, it is important to note
that the gain A/2 is the gain from Pin PIPx to Pin PONx, which
is 6 dB lower, or 12.04 dB (×4). The input resistance is reduced
by an internal bias resistor of 14.7 kΩ in parallel with the source
resistance connected to Pin PIPx, with Pin PMDx ac-grounded.
Equation 3 can be used to calculate the needed RFB for a desired
RIN, and is used for higher values of RIN.
7
.
14
||
)
4
1
( +
=
FB
IN
R
(3)
For example, to set RIN = 200 Ω, the value of RFB is 1.013 kΩ. If the
simplified Equation 2 is used to calculate RIN, the value is 197 Ω,
resulting in a less than 0.1 dB gain error. Factors such as a widely
varying source resistance might influence the absolute gain
accuracy more significantly. At higher frequencies, the input
capacitance of the PrA needs to be considered. The user must
determine the level of matching accuracy and adjust RFB
accordingly.
The bandwidths (BW) of the preamplifier and VGA are
approximately 110 MHz each, resulting in a cascaded BW of
approximately 80 MHz. Ultimately the BW of the PrA limits the
accuracy of the synthesized RIN. For RIN = RS up to approximately
200 Ω, the best match is between 100 kHz and 10 MHz, where
the lower frequency limit is determined by the size of the ac
coupling capacitors, and the upper limit is determined by the
preamplifier BW. Furthermore, the input capacitance and RS
limits the BW at higher frequencies.
INP
U
T
I
M
P
E
DANC
E
(
)
FREQUENCY (Hz)
04
97
6
-10
2
10
100
1k
100k
1M
10M
50M
RIN = 500, RFB = 2.5k
RSH =
, CSH = 0pF
RIN = 200, RFB = 1k
RSH = 50, CSH = 22pF
RIN = 100, RFB = 499
RIN = 50, RFB = 249
RSH =
, CSH = 0pF
RSH = 50, CSH = 22pF
Figure 55. RIN vs. Frequency for Various Values of RFB;
Effects of RSH and CSH are also shown.
Figure 55 shows RIN vs. frequency for various values of RFB. Note
that at the lowest value, 50 Ω, RIN peaks at frequencies greater than
10 MHz. This is due to the BW roll-off of the PrA as mentioned
earlier. The RSH and CSH network shown in Figure 58 reduces
this peaking.
However, as can be seen for larger RIN values, parasitic capacitance
starts rolling off the signal BW before the PrA can produce
peaking and the RSH/CSH network further degrades the match.
Therefore, RSH and CSH should not be used for values of RIN
greater than 50 Ω.
Noise
The total input referred noise (IRN) is approximately 1.3 nV/√Hz.
Allowing for a gain of ×8 in the preamp, the VGA noise is
0.46 nV/√Hz referred to the PrA input. The preamp noise is
1.2 nV/√Hz. It is important to note that these noise values include
all amplifier noise sources, including the VGA and the preamplifier
gain resistors. Frequently, manufacturer noise specifications
exclude gain setting resistors, and the voltage noise spectral density
of an op amp might be presented as 1 nV/√Hz. Including the
gain resistors results in a much higher noise specification.
相關(guān)PDF資料
PDF描述
RSM06DRSI-S288 CONN EDGECARD 12POS DIP .156 SLD
LGU2W101MELA CAP ALUM 100UF 450V 20% SNAP
1-1499687-0 AMPTRAC I/O 2MM CABLE 12POS 10FT
ESM11DSEP-S243 CONN EDGECARD 22POS .156 EYELET
AD8334-EVALZ BOARD EVALUATION FOR AD8334
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD8336 制造商:AD 制造商全稱:Analog Devices 功能描述:General-Purpose, −55 to +125, Wide Bandwidth, DC-Coupled VGA
AD8336ACPZ 制造商:Analog Devices 功能描述:SP AMP VARIABLE GAIN AMP SGL 12V 16LFCSP EP - Bulk
AD8336ACPZ-R7 功能描述:IC VGA GP SGL-ENDED 16-LFCSP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:X-AMP® 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:60 系列:- 類型:可變?cè)鲆娣糯笃?應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤(pán)
AD8336ACPZ-RL 功能描述:IC VGA GP SGL-ENDED 16-LFCSP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:X-AMP® 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:60 系列:- 類型:可變?cè)鲆娣糯笃?應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤(pán)
AD8336ACPZ-WP 功能描述:IC VGA GP SGL-ENDED 16-LFCSP RoHS:是 類別:集成電路 (IC) >> 線性 - 放大器 - 專用 系列:X-AMP® 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:60 系列:- 類型:可變?cè)鲆娣糯笃?應(yīng)用:CATV 安裝類型:表面貼裝 封裝/外殼:20-WQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:20-TQFN-EP(5x5) 包裝:托盤(pán)