參數(shù)資料
型號(hào): AD9754ARUZRL7
廠商: Analog Devices Inc
文件頁(yè)數(shù): 4/24頁(yè)
文件大?。?/td> 0K
描述: IC DAC 14BIT 125MSPS 28-TSSOP
產(chǎn)品培訓(xùn)模塊: Data Converter Fundamentals
DAC Architectures
標(biāo)準(zhǔn)包裝: 1,000
系列: TxDAC®
設(shè)置時(shí)間: 35ns
位數(shù): 14
數(shù)據(jù)接口: 并聯(lián)
轉(zhuǎn)換器數(shù)目: 1
電壓電源: 模擬和數(shù)字
功率耗散(最大): 220mW
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 28-TSSOP(0.173",4.40mm 寬)
供應(yīng)商設(shè)備封裝: 28-TSSOP
包裝: 帶卷 (TR)
輸出數(shù)目和類型: 1 電流,單極;1 電流,雙極
采樣率(每秒): 125M
其它名稱: AD9754ARUZRL7-ND
AD9754ARUZRL7TR
AD9754
–12–
REV. A
The most significant improvement in the AD9754’s distortion
and noise performance is realized using a differential output
configuration. The common-mode error sources of both
IOUTA and IOUTB can be substantially reduced by the
common-mode rejection of a transformer or differential am-
plifier. These common-mode error sources include even-order
distortion products and noise. The enhancement in distortion
performance becomes more significant as the reconstructed
waveform’s frequency content increases and/or its amplitude
decreases.
The distortion and noise performance of the AD9754 is also
slightly dependent on the analog and digital supply as well as the
full-scale current setting, IOUTFS. Operating the analog supply at
5.0 V ensures maximum headroom for its internal PMOS current
sources and differential switches leading to improved distortion
performance. Although IOUTFS can be set between 2 mA and
20 mA, selecting an IOUTFS of 20 mA will provide the best
distortion and noise performance also shown in Figure 13. The
noise performance of the AD9754 is affected by the digital sup-
ply (DVDD), output frequency, and increases with increasing
clock rate as shown in Figure 8. Operating the AD9754 with
low voltage logic levels between 3 V and 3.3 V will slightly
reduce the amount of on-chip digital noise.
In summary, the AD9754 achieves the optimum distortion and
noise performance under the following conditions:
(1) Differential Operation.
(2) Positive voltage swing at IOUTA and IOUTB limited to
+0.5 V.
(3) IOUTFS set to 20 mA.
(4) Analog Supply (AVDD) set at 5.0 V.
(5) Digital Supply (DVDD) set at 3.0 V to 3.3 V with appro-
priate logic levels.
Note that the ac performance of the AD9754 is characterized
under the above mentioned operating conditions.
DIGITAL INPUTS
The AD9754’s digital input consists of 14 data input pins and a
clock input pin. The 14-bit parallel data inputs follow standard
positive binary coding where DB13 is the most significant bit
(MSB), and DB0 is the least significant bit (LSB). IOUTA
produces a full-scale output current when all data bits are at
Logic 1. IOUTB produces a complementary output with the
full-scale current split between the two outputs as a function of
the input code.
The digital interface is implemented using an edge-triggered
master slave latch. The DAC output is updated following the
rising edge of the clock as shown in Figure 1 and is designed to
support a clock rate as high as 125 MSPS. The clock can be
operated at any duty cycle that meets the specified latch pulse
width. The setup and hold times can also be varied within the
clock cycle as long as the specified minimum times are met,
although the location of these transition edges may affect digital
feedthrough and distortion performance. Best performance is
typically achieved when the input data transitions on the falling
edge of a 50% duty cycle clock.
The digital inputs are CMOS-compatible with logic thresholds,
VTHRESHOLD, set to approximately half the digital positive supply
(DVDD) or
VTHRESHOLD = DVDD/2 (
±20%)
The internal digital circuitry of the AD9754 is capable of operating
over a digital supply range of 2.7 V to 5.5 V. As a result, the
digital inputs can also accommodate TTL levels when DVDD is
set to accommodate the maximum high level voltage of the TTL
drivers VOH(MAX). A DVDD of 3 V to 3.3 V will typically ensure
proper compatibility with most TTL logic families. Figure 22
shows the equivalent digital input circuit for the data and clock
inputs. The sleep mode input is similar with the exception that
it contains an active pull-down circuit, thus ensuring that the
AD9754 remains enabled if this input is left disconnected.
DVDD
DIGITAL
INPUT
Figure 22. Equivalent Digital Input
Since the AD9754 is capable of being updated up to 125 MSPS,
the quality of the clock and data input signals are important in
achieving the optimum performance. Operating the AD9754
with reduced logic swings and a corresponding digital supply
(DVDD) will result in the lowest data feedthrough and on-chip
digital noise. The drivers of the digital data interface circuitry
should be specified to meet the minimum setup and hold times
of the AD9754 as well as its required min/max input logic level
thresholds.
Digital signal paths should be kept short and run lengths
matched to avoid propagation delay mismatch. The insertion of
a low value resistor network (i.e., 20
to 100 ) between the
AD9754 digital inputs and driver outputs may be helpful in
reducing any overshooting and ringing at the digital inputs that
contribute to data feedthrough. For longer run lengths and high
data update rates, strip line techniques with proper termination
resistors should be considered to maintain “clean” digital inputs.
The external clock driver circuitry should provide the AD9754
with a low jitter clock input meeting the min/max logic levels
while providing fast edges. Fast clock edges will help minimize
any jitter that will manifest itself as phase noise on a recon-
structed waveform. Thus, the clock input should be driven by
the fastest logic family suitable for the application.
Note, that the clock input could also be driven via a sine wave,
which is centered around the digital threshold (i.e., DVDD/2)
and meets the min/max logic threshold. This will typically result
in a slight degradation in the phase noise, which becomes more
noticeable at higher sampling rates and output frequencies.
Also, at higher sampling rates, the 20% tolerance of the digital
logic threshold should be considered since it will affect the effec-
tive clock duty cycle and, subsequently, cut into the required
data setup and hold times.
相關(guān)PDF資料
PDF描述
CS3108A-32-25PW CONN PLUG 25POS RT ANG W/PINS
VE-JTX-MZ-F3 CONVERTER MOD DC/DC 5.2V 25W
MS27505E17F55SB CONN RCPT 55POS BOX MNT W/SCKT
MS3452W36-15S CONN RCPT 35POS BOX MNT W/SCKT
VE-JTX-MZ-F2 CONVERTER MOD DC/DC 5.2V 25W
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD9754ARZ 功能描述:IC DAC 14BIT 125MSPS 28-SOIC RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:TxDAC® 標(biāo)準(zhǔn)包裝:1 系列:- 設(shè)置時(shí)間:4.5µs 位數(shù):12 數(shù)據(jù)接口:串行,SPI? 轉(zhuǎn)換器數(shù)目:1 電壓電源:單電源 功率耗散(最大):- 工作溫度:-40°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 供應(yīng)商設(shè)備封裝:8-SOICN 包裝:剪切帶 (CT) 輸出數(shù)目和類型:1 電壓,單極;1 電壓,雙極 采樣率(每秒):* 其它名稱:MCP4921T-E/SNCTMCP4921T-E/SNRCTMCP4921T-E/SNRCT-ND
AD9754ARZ 制造商:Analog Devices 功能描述:IC 14BIT DAC POLY FUSE SMD 9754
AD9754ARZRL 功能描述:IC DAC 14BIT 125MSPS 28-SOIC TR RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:TxDAC® 標(biāo)準(zhǔn)包裝:47 系列:- 設(shè)置時(shí)間:2µs 位數(shù):14 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:1 電壓電源:單電源 功率耗散(最大):55µW 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:28-SSOP(0.209",5.30mm 寬) 供應(yīng)商設(shè)備封裝:28-SSOP 包裝:管件 輸出數(shù)目和類型:1 電流,單極;1 電流,雙極 采樣率(每秒):*
AD9754-EB 制造商:Analog Devices 功能描述:Evaluation Board For AD9754 制造商:Analog Devices 功能描述:DEV TOOLS, EVAL BD FOR AD9754 - Bulk
AD9754-EBZ 功能描述:BOARD EVAL FOR AD9754 RoHS:是 類別:編程器,開(kāi)發(fā)系統(tǒng) >> 評(píng)估板 - 數(shù)模轉(zhuǎn)換器 (DAC) 系列:TxDAC® 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1 系列:- DAC 的數(shù)量:4 位數(shù):12 采樣率(每秒):- 數(shù)據(jù)接口:串行,SPI? 設(shè)置時(shí)間:3µs DAC 型:電流/電壓 工作溫度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581