IOUTA and IOUTB also h" />
參數(shù)資料
型號: AD9762ARZRL
廠商: Analog Devices Inc
文件頁數(shù): 6/23頁
文件大?。?/td> 0K
描述: IC DAC 12BIT 125MSPS 28-SOIC
產(chǎn)品培訓(xùn)模塊: Data Converter Fundamentals
DAC Architectures
標(biāo)準(zhǔn)包裝: 1,000
系列: TxDAC®
設(shè)置時間: 35ns
位數(shù): 12
數(shù)據(jù)接口: 并聯(lián)
轉(zhuǎn)換器數(shù)目: 1
電壓電源: 模擬和數(shù)字
功率耗散(最大): 160mW
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 28-SOIC(0.295",7.50mm 寬)
供應(yīng)商設(shè)備封裝: 28-SOIC W
包裝: 帶卷 (TR)
輸出數(shù)目和類型: 2 電流,單極;2 電流,雙極
采樣率(每秒): 125M
AD9762
–14–
REV. B
IOUTA and IOUTB also have a negative and positive voltage
compliance range that must be adhered to in order to achieve
optimum performance. The negative output compliance range
of –1.0 V is set by the breakdown limits of the CMOS process.
Operation beyond this maximum limit may result in a break-
down of the output stage and affect the reliability of the AD9762.
The positive output compliance range is slightly dependent
on the full-scale output current, IOUTFS. It degrades slightly
from its nominal 1.25 V for an IOUTFS = 20 mA to 1.00 V for an
IOUTFS = 2 mA. The optimum distortion performance for a
single-ended or differential output is achieved when the maximum
full-scale signal at IOUTA and IOUTB does not exceed 0.5 V.
Applications requiring the AD9762’s output (i.e., VOUTA and/
or VOUTB) to extend its output compliance range should size
RLOAD accordingly. Operation beyond this compliance range
will adversely affect the AD9762’s linearity performance and
subsequently degrade its distortion performance.
DIGITAL INPUTS
The AD9762’s digital input consists of 12 data input pins and a
clock input pin. The 12-bit parallel data inputs follow standard
positive binary coding where DB11 is the most significant bit
(MSB) and DB0 is the least significant bit (LSB). IOUTA produces
a full-scale output current when all data bits are at Logic 1.
IOUTB produces a complementary output with the full-scale current
split between the two outputs as a function of the input code.
The digital interface is implemented using an edge-triggered
master slave latch. The DAC output is updated following the
rising edge of the clock as shown in Figure 1 and is designed
to support a clock rate as high as 125 MSPS. The clock can
be operated at any duty cycle that meets the specified latch
pulsewidth. The set-up and hold times can also be varied within
the clock cycle as long as the specified minimum times are met;
although the location of these transition edges may affect digital
feedthrough and distortion performance. Best performance is
typically achieved when the input data transitions on the falling edge
of a 50% duty cycle clock.
The digital inputs are CMOS compatible with logic thresholds,
VTHRESHOLD set to approximately half the digital positive supply
(DVDD) or
VTHRESHOLD = DVDD/2 (
±20%)
The internal digital circuitry of the AD9762 is capable of operating
over a digital supply range of 2.7 V to 5.5 V. As a result, the
digital inputs can also accommodate TTL levels when DVDD is
set to accommodate the maximum high level voltage of the TTL
drivers VOH(MAX). A DVDD of 3 V to 3.3 V will typically ensure
proper compatibility with most TTL logic families. Figure 46
shows the equivalent digital input circuit for the data and clock
inputs. The sleep mode input is similar with the exception that
it contains an active pull-down circuit, thus ensuring that the
AD9762 remains enabled if this input is left disconnected.
DVDD
DIGITAL
INPUT
Figure 46. Equivalent Digital Input
Since the AD9762 is capable of being updated up to 125 MSPS,
the quality of the clock and data input signals are important
in achieving the optimum performance. The drivers of the
digital data interface circuitry should be specified to meet the
minimum set-up and hold times of the AD9762 as well as its
required min/max input logic level thresholds. Typically, the
selection of the slowest logic family that satisfies the above
conditions will result in the lowest data feedthrough and noise.
Digital signal paths should be kept short and run lengths
matched to avoid propagation delay mismatch. The insertion of
a low value resistor network (i.e., 20
to 100 ) between the
AD9762 digital inputs and driver outputs may be helpful in
reducing any overshooting and ringing at the digital inputs that
contribute to data feedthrough. For longer run lengths and high
data update rates, strip line techniques with proper termination
resistors should be considered to maintain “clean” digital
inputs. Also, operating the AD9762 with reduced logic swings
and a corresponding digital supply (DVDD) will also reduce
data feedthrough.
The external clock driver circuitry should provide the AD9762
with a low jitter clock input meeting the min/max logic levels
while providing fast edges. Fast clock edges will help minimize
any jitter that will manifest itself as phase noise on a recon-
structed waveform. Thus, the clock input should be driven by
the fastest logic family suitable for the application.
Note, the clock input could also be driven via a sine wave,
which is centered around the digital threshold (i.e., DVDD/2),
and meets the min/max logic threshold. This will typically result
in a slight degradation in the phase noise, which becomes more
noticeable at higher sampling rates and output frequencies.
Also, at higher sampling rates, the 20% tolerance of the digital
logic threshold should be considered since it will affect the
effective clock duty cycle and subsequently cut into the required
data set-up and hold times.
SLEEP MODE OPERATION
The AD9762 has a power-down function which turns off the
output current and reduces the supply current to less than
8.5 mA over the specified supply range of 2.7 V to 5.5 V and
temperature range. This mode can be activated by applying
a logic level “1” to the SLEEP pin. This digital input also
contains an active pull-down circuit that ensures the AD9762
remains enabled if this input is left disconnected. The SLEEP
input with active pull-down requires <40
A of drive current.
The power-up and power-down characteristics of the AD9762
are dependent upon the value of the compensation capacitor
connected to COMP1. With a nominal value of 0.1
F, the
AD9762 takes less than 5
s to power down and approximately
3.25 ms to power back up. Note, the SLEEP MODE should not
be used when the external control amplifier is used as shown in
Figure 45.
POWER DISSIPATION
The power dissipation, PD, of the AD9762 is dependent on
several factors which include: (1) AVDD and DVDD, the power
supply voltages; (2) IOUTFS, the full-scale current output; (3)
fCLOCK, the update rate; (4) and the reconstructed digital input
waveform. The power dissipation is directly proportional to the
analog supply current, IAVDD, and the digital supply current, IDVDD.
IAVDD is directly proportional to IOUTFS as shown in Figure 47
and is insensitive to fCLOCK.
相關(guān)PDF資料
PDF描述
VI-J0K-MX-B1 CONVERTER MOD DC/DC 40V 75W
VI-J0J-MX-B1 CONVERTER MOD DC/DC 36V 75W
IDT49FCT3805SO IC CLK BUFFER 1:5 100MHZ 20-SOIC
V110A24H400BL3 CONVERTER MOD DC/DC 24V 400W
IDT49FCT3805QI8 IC CLK BUFFER 1:5 100MHZ 20-QSOP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD9762-EB 制造商:Analog Devices 功能描述:IC SEMICONDUCTOR ((NS))
AD9762-EBZ 功能描述:BOARD EVAL FOR AD9762 RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評估板 - 數(shù)模轉(zhuǎn)換器 (DAC) 系列:TxDAC® 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1 系列:- DAC 的數(shù)量:4 位數(shù):12 采樣率(每秒):- 數(shù)據(jù)接口:串行,SPI? 設(shè)置時間:3µs DAC 型:電流/電壓 工作溫度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
AD9763 制造商:AD 制造商全稱:Analog Devices 功能描述:10-Bit, 125 MSPS Dual TxDAC+ D/A Converter
AD9763_11 制造商:AD 制造商全稱:Analog Devices 功能描述:10-/12-/14-Bit, 125 MSPS Dual TxDAC Digital-to-Analog Converters
AD9763AST 制造商:Analog Devices 功能描述:DAC 2-CH Segment 10-bit 48-Pin LQFP 制造商:Rochester Electronics LLC 功能描述:10 BIT, 125 MSPS DUAL TXDAC+ - Tape and Reel 制造商:Analog Devices 功能描述:IC 10-BIT DAC