IOUTFS and RLOAD can b" />
參數(shù)資料
型號: AD9764ARRL
廠商: Analog Devices Inc
文件頁數(shù): 7/22頁
文件大?。?/td> 0K
描述: IC DAC 14BIT 125MSPS 28-SOIC
產(chǎn)品培訓(xùn)模塊: Data Converter Fundamentals
DAC Architectures
標(biāo)準(zhǔn)包裝: 1,000
系列: TxDAC®
設(shè)置時間: 35ns
位數(shù): 14
轉(zhuǎn)換器數(shù)目: 1
電壓電源: 模擬和數(shù)字
功率耗散(最大): 170mW
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 28-SOIC(0.295",7.50mm 寬)
供應(yīng)商設(shè)備封裝: 28-SOIC W
包裝: 帶卷 (TR)
輸出數(shù)目和類型: 2 電流,單極;2 電流,雙極
采樣率(每秒): 125M
REV. B
AD9764
–15–
IOUTFS and RLOAD can be selected as long as the positive compli-
ance range is adhered to. One additional consideration in this
mode is the integral nonlinearity (INL) as discussed in the Ana-
log Output section of this data sheet. For optimum INL perfor-
mance, the single-ended, buffered voltage output configuration
is suggested.
AD9764
IOUTA
IOUTB 21
50
25
50
VOUTA = 0 TO +0.5V
IOUTFS = 20mA
22
Figure 36. 0 V to +0.5 V Unbuffered Voltage Output
SINGLE-ENDED BUFFERED VOLTAGE OUTPUT
CONFIGURATION
Figure 37 shows a buffered single-ended output configuration in
which the op amp U1 performs an I-V conversion on the
AD9764 output current. U1 maintains IOUTA (or IOUTB) at a
virtual ground, thus minimizing the nonlinear output impedance
effect on the DAC’s INL performance as discussed in the Ana-
log Output section. Although this single-ended configuration
typically provides the best dc linearity performance, its ac distor-
tion performance at higher DAC update rates may be limited by
U1’s slewing capabilities. U1 provides a negative unipolar
output voltage and its full-scale output voltage is simply the
product of RFB and IOUTFS. The full-scale output should be set
within U1’s voltage output swing capabilities by scaling IOUTFS
and/or RFB. An improvement in ac distortion performance may
result with a reduced IOUTFS since the signal current U1 will be
required to sink will be subsequently reduced.
AD9764
22
IOUTA
IOUTB 21
COPT
200
U1
VOUT = IOUTFS
RFB
IOUTFS = 10mA
RFB
200
Figure 37. Unipolar Buffered Voltage Output
POWER AND GROUNDING CONSIDERATIONS
In systems seeking to simultaneously achieve high speed and
high performance, the implementation and construction of the
printed circuit board design is often as important as the circuit
design. Proper RF techniques must be used in device selection,
placement and routing and supply bypassing and grounding.
Figures 42–47 illustrate the recommended printed circuit board
ground, power and signal plane layouts that are implemented on
the AD9764 evaluation board.
Proper grounding and decoupling should be a primary objective
in any high speed, high resolution system. The AD9764 features
separate analog and digital supply and ground pins to optimize
the management of analog and digital ground currents in a
system. In general, AVDD, the analog supply, should be decoupled
to ACOM, the analog common, as close to the chip as physi-
cally possible. Similarly, DVDD, the digital supply, should be
decoupled to DCOM as close as physically as possible.
For those applications requiring a single +5 V or +3 V supply
for both the analog and digital supply, a clean analog supply
may be generated using the circuit shown in Figure 38. The
circuit consists of a differential LC filter with separate power
supply and return lines. Lower noise can be attained using low
ESR type electrolytic and tantalum capacitors.
100 F
ELECT.
10-22 F
TANT.
0.1 F
CER.
TTL/CMOS
LOGIC
CIRCUITS
+5V OR +3V
POWER SUPPLY
FERRITE
BEADS
AVDD
ACOM
Figure 38. Differential LC Filter for Single +5 V or +3 V
Applications
Maintaining low noise on power supplies and ground is critical
to obtain optimum results from the AD9764. If properly
implemented, ground planes can perform a host of functions on
high speed circuit boards: bypassing, shielding current trans-
port, etc. In mixed signal design, the analog and digital portions
of the board should be distinct from each other, with the analog
ground plane confined to the areas covering the analog signal
traces, and the digital ground plane confined to areas covering
the digital interconnects.
All analog ground pins of the DAC, reference and other analog
components should be tied directly to the analog ground plane.
The two ground planes should be connected by a path 1/8 to
1/4 inch wide underneath or within 1/2 inch of the DAC to
maintain optimum performance. Care should be taken to ensure
that the ground plane is uninterrupted over crucial signal paths.
On the digital side, this includes the digital input lines running
to the DAC as well as any clock signals. On the analog side, this
includes the DAC output signal, reference signal and the supply
feeders.
The use of wide runs or planes in the routing of power lines is
also recommended. This serves the dual role of providing a low
series impedance power supply to the part, as well as providing
some “free” capacitive decoupling to the appropriate ground
plane. It is essential that care be taken in the layout of signal and
power ground interconnects to avoid inducing extraneous volt-
age drops in the signal ground paths. It is recommended that all
connections be short, direct and as physically close to the pack-
age as possible in order to minimize the sharing of conduction
paths between different currents. When runs exceed an inch in
length, strip line techniques with proper termination resistors
should be considered. The necessity and value of this resistor
will be dependent upon the logic family used.
For a more detailed discussion of the implementation and con-
struction of high speed, mixed signal printed circuit boards,
refer to Analog Devices’ application notes AN-280 and AN-333.
相關(guān)PDF資料
PDF描述
VI-2W4-IV-F3 CONVERTER MOD DC/DC 48V 150W
VI-2W4-IV-F1 CONVERTER MOD DC/DC 48V 150W
VE-B3P-MX-S CONVERTER MOD DC/DC 13.8V 75W
AD8138ARZ IC AMP DIFF LDIST LP 95MA 8SOIC
AD8138ARMZ IC AMP DIFF LDIST LP 95MA 8MSOP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD9764ARU 功能描述:IC DAC 14BIT 125MSPS 28-TSSOP RoHS:否 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:TxDAC® 產(chǎn)品培訓(xùn)模塊:Data Converter Fundamentals DAC Architectures 標(biāo)準(zhǔn)包裝:750 系列:- 設(shè)置時間:7µs 位數(shù):16 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:1 電壓電源:雙 ± 功率耗散(最大):100mW 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:28-LCC(J 形引線) 供應(yīng)商設(shè)備封裝:28-PLCC(11.51x11.51) 包裝:帶卷 (TR) 輸出數(shù)目和類型:1 電壓,單極;1 電壓,雙極 采樣率(每秒):143k
AD9764ARURL 功能描述:INTEGRATED CIRCUIT 制造商:analog devices inc. 系列:* 包裝:帶卷(TR) 零件狀態(tài):最後搶購 封裝/外殼:28-TSSOP(0.173",4.40mm 寬) 供應(yīng)商器件封裝:28-TSSOP 標(biāo)準(zhǔn)包裝:1
AD9764ARURL7 功能描述:IC DAC 14BIT 125MSPS 28-TSSOP RoHS:否 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:TxDAC® 標(biāo)準(zhǔn)包裝:47 系列:- 設(shè)置時間:2µs 位數(shù):14 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:1 電壓電源:單電源 功率耗散(最大):55µW 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:28-SSOP(0.209",5.30mm 寬) 供應(yīng)商設(shè)備封裝:28-SSOP 包裝:管件 輸出數(shù)目和類型:1 電流,單極;1 電流,雙極 采樣率(每秒):*
AD9764ARUZ 功能描述:IC DAC 14BIT 125MSPS 28-TSSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:TxDAC® 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:50 系列:- 設(shè)置時間:4µs 位數(shù):12 數(shù)據(jù)接口:串行 轉(zhuǎn)換器數(shù)目:2 電壓電源:單電源 功率耗散(最大):- 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-TSSOP,8-MSOP(0.118",3.00mm 寬) 供應(yīng)商設(shè)備封裝:8-uMAX 包裝:管件 輸出數(shù)目和類型:2 電壓,單極 采樣率(每秒):* 產(chǎn)品目錄頁面:1398 (CN2011-ZH PDF)
AD9764ARUZRL7 功能描述:IC DAC 14BIT 125MSPS 28-TSSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:TxDAC® 標(biāo)準(zhǔn)包裝:47 系列:- 設(shè)置時間:2µs 位數(shù):14 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:1 電壓電源:單電源 功率耗散(最大):55µW 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:28-SSOP(0.209",5.30mm 寬) 供應(yīng)商設(shè)備封裝:28-SSOP 包裝:管件 輸出數(shù)目和類型:1 電流,單極;1 電流,雙極 采樣率(每秒):*