Connect R1IN
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉锛� AD977CNZ
寤犲晢锛� Analog Devices Inc
鏂囦欢闋佹暩(sh霉)锛� 6/24闋�
鏂囦欢澶у皬锛� 0K
鎻忚堪锛� IC ADC 16BIT 100KSPS 20-DIP
妯欐簴鍖呰锛� 18
浣嶆暩(sh霉)锛� 16
閲囨ǎ鐜囷紙姣忕锛夛細 100k
鏁�(sh霉)鎿�(j霉)鎺ュ彛锛� 涓茶锛孲PI?
杞夋彌鍣ㄦ暩(sh霉)鐩細 1
鍔熺巼鑰楁暎锛堟渶澶э級锛� 100mW
闆诲闆绘簮锛� 妯℃摤鍜屾暩(sh霉)瀛�
宸ヤ綔婧害锛� -40°C ~ 85°C
瀹夎椤炲瀷锛� 閫氬瓟
灏佽/澶栨锛� 20-DIP锛�0.300"锛�7.62mm锛�
渚涙噳鍟嗚ō鍌欏皝瑁濓細 20-PDIP
鍖呰锛� 绠′欢
杓稿叆鏁�(sh霉)鐩拰椤炲瀷锛� 3 鍊嬪柈绔�锛屽柈妤�锛�3 鍊嬪柈绔�锛岄洐妤�
鐢�(ch菐n)鍝佺洰閷勯爜闈細 777 (CN2011-ZH PDF)
閰嶇敤锛� EVAL-AD977CB-ND - BOARD EVAL FOR AD977
EVAL-AD977ACB-ND - BOARD EVAL FOR AD977A
AD977/AD977A
鈥�14鈥�
REV. D
Table I. AD977A Analog Input Configuration
Input Voltage
Connect R1IN
Connect R2IN
Connect R3IN
Input
Range
via 200
to
via 100
to
Impedance
卤10 V
VIN
AGND
2.5 V
11.5 k
卤5 V
AGND
VIN
2.5 V
6.7 k
卤3.3 V
VIN
2.5 V
5.4 k
0 V to 10 V
AGND
VIN
AGND
6.7 k
0 V to 5 V
AGND
VIN
5.0 k
0 V to 4 V
VIN
AGND
VIN
5.4 k
Table II. AD977 Analog Input Configuration
Input Voltage
Connect R1IN
Connect R2IN
Connect R3IN
Input
Range
via 200
to
via 100
to
Impedance
卤10 V
VIN
AGND
CAP
22.9 k
卤5 V
AGND
VIN
CAP
13.3 k
卤3.3 V
VIN
CAP
10.7 k
0 V to 10 V
AGND
VIN
AGND
13.3 k
0 V to 5 V
AGND
VIN
10.0 k
0 V to 4 V
VIN
AGND
VIN
10.7 k
ANALOG INPUTS
The AD977/AD977A is specified to operate with six full-scale
analog input ranges. Connections required for each of the three
analog inputs, R1IN, R2IN and R3IN, and the resulting full-scale
ranges, are shown in Table I and Table II. The nominal input
impedance for each analog input range is also shown. Table III
shows the output codes for the ideal input voltages of each of the
six analog input ranges.
The analog input section has a
卤25 V overvoltage protection on
R1IN and R2IN. Since the AD977/AD977A has two analog
grounds it is important to ensure that the analog input is refer-
enced to the AGND1 pin, the low current ground. This will
minimize any problems associated with a resistive ground drop.
It is also important to ensure that the analog input of the
AD977/AD977A is driven by a low impedance source. With its
primarily resistive analog input circuitry, the ADC can be driven
by a wide selection of general purpose amplifiers.
To best match the low distortion requirements of the AD977/
AD977A, care should be taken in the selection of the drive cir-
cuitry op amp.
Figure 10 shows the simplified analog input section for the
AD977/AD977A. Since the AD977/AD977A can operate with
an internal or external reference, and several different analog
input ranges, the full-scale analog input range is best represented
with a voltage that spans 0 V to VREF across the 40 pF sampling
capacitor. The onboard resistors are laser trimmed to ratio
match for adjustment of offset and full-scale error using fixed
external resistors.
The configurations shown in Figures 12 and 13 are required to
obtain the data sheet specifications for offset and full-scale error.
The external fixed resistors are used during factory calibration so
that a single 5 V supply can be used to bias the hardware trim
circuitry. With the hardware adjust circuits shown in Figures 12
and 13, offset and full-scale error can be trimmed to zero. Refer
to the Offset and Gain Adjust section.
If larger offset and full-scale errors are permitted, or if soft-
ware calibration is used, the external resistors can be omit-
ted. Table IV shows the resultant input ranges and offset and
full-scale errors.
Using the AD977A with Bipolar Input Ranges
The connection diagrams in Figure 11 show a buffer amplifier
required for bipolar operation of the AD977A when using the
internal reference. The buffer amplifier is required to isolate the
CAP pin from the signal dependent current in the R3IN pin. A
high speed op amp such as the AD8031 can be used with a
single 5 V power supply without degrading the performance of
the AD977A. The buffer must have good settling characteristics
and provide low total noise within the input bandwidth of the
AD977A.
R1IN
R2IN
R3IN
REF
4k
AGND2
CAP
AGND1
AD977/AD977A
20k /10k
2.5V
REFERENCE
10k /5k
5k /2.5k
20k /10k
40pF
SWITCHED
CAP ADC
Figure 10. AD977/AD977A Simplified Analog Input
鐩搁棞PDF璩囨枡
PDF鎻忚堪
MS3101R16S-4S CONN RCPT 2POS PANEL MNT W/SCKT
ADW71205YSTZ IC ADC RDC 12BIT W/OSC 44-LQFP
AD7863BRZ-10 IC ADC 14BIT DUAL 2CHAN 28SOIC
AD9608BCPZ-125 IC ADC DUAL 10BIT 64-LFCSP
MS3102A22-23PW CONN RCPT 8POS BOX MNT W/PINS
鐩搁棞浠g悊鍟�/鎶€琛撳弮鏁�(sh霉)
鍙冩暩(sh霉)鎻忚堪
AD977CR 鍒堕€犲晢:Analog Devices 鍔熻兘鎻忚堪:ADC Single SAR 100ksps 16-bit Serial 20-Pin SOIC W 鍒堕€犲晢:Rochester Electronics LLC 鍔熻兘鎻忚堪:IC, MONO 16-BIT ADC - Bulk
AD977CRRL 鍔熻兘鎻忚堪:IC ADC 16BIT 100KSPS 20-SOIC T/R RoHS:鍚� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 妯℃暩(sh霉)杞夋彌鍣� 绯诲垪:- 妯欐簴鍖呰:1 绯诲垪:- 浣嶆暩(sh霉):14 閲囨ǎ鐜囷紙姣忕锛�:83k 鏁�(sh霉)鎿�(j霉)鎺ュ彛:涓茶锛屽苟鑱�(li谩n) 杞夋彌鍣ㄦ暩(sh霉)鐩�:1 鍔熺巼鑰楁暎锛堟渶澶э級:95mW 闆诲闆绘簮:闆� ± 宸ヤ綔婧害:0°C ~ 70°C 瀹夎椤炲瀷:閫氬瓟 灏佽/澶栨:28-DIP锛�0.600"锛�15.24mm锛� 渚涙噳鍟嗚ō鍌欏皝瑁�:28-PDIP 鍖呰:绠′欢 杓稿叆鏁�(sh霉)鐩拰椤炲瀷:1 鍊嬪柈绔紝闆欐サ
AD977CRS 鍔熻兘鎻忚堪:IC ADC 16BIT 100KSPS 28-SSOP RoHS:鍚� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 妯℃暩(sh霉)杞夋彌鍣� 绯诲垪:- 鐢�(ch菐n)鍝佸煿瑷撴ā濉�:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 妯欐簴鍖呰:2,500 绯诲垪:- 浣嶆暩(sh霉):12 閲囨ǎ鐜囷紙姣忕锛�:3M 鏁�(sh霉)鎿�(j霉)鎺ュ彛:- 杞夋彌鍣ㄦ暩(sh霉)鐩�:- 鍔熺巼鑰楁暎锛堟渶澶э級:- 闆诲闆绘簮:- 宸ヤ綔婧害:- 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:SOT-23-6 渚涙噳鍟嗚ō鍌欏皝瑁�:SOT-23-6 鍖呰:甯跺嵎 (TR) 杓稿叆鏁�(sh霉)鐩拰椤炲瀷:-
AD977CRSZ 鍔熻兘鎻忚堪:IC ADC 16BIT SRL 100KSPS 28SSOP RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 妯℃暩(sh霉)杞夋彌鍣� 绯诲垪:- 鍏跺畠鏈夐棞鏂囦欢:TSA1204 View All Specifications 妯欐簴鍖呰:1 绯诲垪:- 浣嶆暩(sh霉):12 閲囨ǎ鐜囷紙姣忕锛�:20M 鏁�(sh霉)鎿�(j霉)鎺ュ彛:骞惰伅(li谩n) 杞夋彌鍣ㄦ暩(sh霉)鐩�:2 鍔熺巼鑰楁暎锛堟渶澶э級:155mW 闆诲闆绘簮:妯℃摤鍜屾暩(sh霉)瀛� 宸ヤ綔婧害:-40°C ~ 85°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:48-TQFP 渚涙噳鍟嗚ō鍌欏皝瑁�:48-TQFP锛�7x7锛� 鍖呰:Digi-Reel® 杓稿叆鏁�(sh霉)鐩拰椤炲瀷:4 鍊嬪柈绔�锛屽柈妤碉紱2 鍊嬪樊鍒�锛屽柈妤� 鐢�(ch菐n)鍝佺洰閷勯爜闈�:1156 (CN2011-ZH PDF) 鍏跺畠鍚嶇ū:497-5435-6
AD977CRZ 鍔熻兘鎻忚堪:IC ADC 16BIT 100KSPS 20SOIC RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 鏁�(sh霉)鎿�(j霉)閲囬泦 - 妯℃暩(sh霉)杞夋彌鍣� 绯诲垪:- 妯欐簴鍖呰:1 绯诲垪:- 浣嶆暩(sh霉):14 閲囨ǎ鐜囷紙姣忕锛�:83k 鏁�(sh霉)鎿�(j霉)鎺ュ彛:涓茶锛屽苟鑱�(li谩n) 杞夋彌鍣ㄦ暩(sh霉)鐩�:1 鍔熺巼鑰楁暎锛堟渶澶э級:95mW 闆诲闆绘簮:闆� ± 宸ヤ綔婧害:0°C ~ 70°C 瀹夎椤炲瀷:閫氬瓟 灏佽/澶栨:28-DIP锛�0.600"锛�15.24mm锛� 渚涙噳鍟嗚ō鍌欏皝瑁�:28-PDIP 鍖呰:绠′欢 杓稿叆鏁�(sh霉)鐩拰椤炲瀷:1 鍊嬪柈绔紝闆欐サ