Fusion Device Family Overview
1-4
Revision 4
– RC oscillator
– Crystal oscillator
– No-Glitch MUX (NGMUX)
Digital I/Os with advanced I/O standards
FPGA VersaTiles
Analog components
–ADC
– Analog I/Os supporting voltage, current, and temperature monitoring
– 1.5 V on-board voltage regulator
– Real-time counter
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design.
In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming
of Fusion devices via an IEEE 1532 JTAG interface.
Unprecedented Integration
Integrated Analog Blocks and Analog I/Os
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total
Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.
The ADC channel sampling sequence and sampling rate are programmable and implemented in the
FPGA logic using Designer and Libero SoC software tool support.
Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode
which can be used to monitor device temperature. The 30 remaining channels can be connected to
external analog signals. The exact number of I/Os available for external connection signals is device-
quad consists of three analog inputs and one gate driver. Each quad can be configured in various built-in
circuit combinations, such as three prescaler circuits, three digital input circuits, a current monitor circuit,
or a temperature monitor circuit. Each prescaler has multiple scaling factors programmed by FPGA
signals to support a large range of analog inputs with positive or negative polarity. When the current
monitor circuit is selected, two adjacent analog inputs measure the voltage drop across a small external
page 2-120. Built-in operational amplifiers amplify small voltage signals for accurate current
measurement. One analog input in each quad can be connected to an external temperature monitor
diode. In addition to the external temperature monitor diode(s), a Fusion device can monitor an internal
temperature diode using dedicated channel 31 of the ADCMUX.
shown is configured to monitor and control an external power supply. The AV pad measures the source
of the power supply. The AC pad measures the voltage drop across an external sense resistor to