Am29LV400
8
PREL I M I N AR Y
DEVICE BUS OPERATIONS
This section describes the requirements and use of the
device bus operations, which are initiated through the
internal command register. The command register itself
does not occupy any addressable memory location.
The register is composed of latches that store the com-
mands, along with the address and data information
needed to execute the command. The contents of the
register serve as inputs to the internal state machine.
The state machine outputs dictate the function of the
device.
Table 1 lists the device bus operations, the in-
puts and control levels they require, and the resulting
output. The following subsections describe each of
these operations in further detail.
Table 1.
Am29LV400 Device Bus Operations
Legend:
L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5 V, X = Don’t Care, AIN = Addresses In, DIN = Data In, DOUT = Data Out
Note: Addresses are A17:A0 in word mode (BYTE# = VIH), A17:A-1 in byte mode (BYTE# = VIL).
Word/Byte Configuration
The BYTE# pin controls whether the device data I/O
pins DQ15–DQ0 operate in the byte or word configura-
tion. If the BYTE# pin is set at logic ‘1’, the device is in
word configuration, DQ15–DQ0 are active and control-
led by CE# and OE#.
If the BYTE# pin is set at logic ‘0’, the device is in byte
configuration, and only data I/O pins DQ0–DQ7 are ac-
tive and controlled by CE# and OE#. The data I/O pins
DQ8–DQ14 are tri-stated, and the DQ15 pin is used as
an input for the LSB (A-1) address function.
Requirements for Reading Array Data
To read array data from the outputs, the system must
drive the CE# and OE# pins to VIL. CE# is the power
control and selects the device. OE# is the output con-
trol and gates array data to the output pins. WE#
should remain at VIH. The BYTE# pin determines
whether the device outputs array data in words or
bytes.
The internal state machine is set for reading array data
upon device power-up, or after a hardware reset. This
ensures that no spurious alteration of the memory con-
tent occurs during the power transition. No command is
necessary in this mode to obtain array data. Standard
microprocessor read cycles that assert valid addresses
on the device address inputs produce valid data on the
device data outputs. The device remains enabled for
read access until the command register contents are
altered.
tions and to Figure 12 for the timing diagram. ICC1 in the DC Characteristics table represents the active cur-
rent specification for reading array data.
Writing Commands/Command Sequences
To write a command or command sequence (which in-
cludes programming data to the device and erasing
sectors of memory), the system must drive WE# and
CE# to VIL, and OE# to VIH.
For program operations, the BYTE# pin determines
whether the device accepts program data in bytes or
formation.
An erase operation can erase one sector, multiple sec-
tors, or the entire device. Tables
2 and
3 indicate the
address space that each sector occupies. A “sector ad-
dress” consists of the address bits required to uniquely
Operation
CE#
OE# WE# RESET#
Addresses
DQ0–
DQ7
DQ8–DQ15
BYTE#
= VIH
BYTE#
= VIL
Read
L
H
AIN
DOUT
DOUT DQ8–DQ14 = High-Z,
DQ15 = A-1
Write
L
H
L
H
AIN
DIN
Standby
VCC ±
0.3 V
XX
VCC ±
0.3 V
X
High-Z
Output Disable
L
H
X
High-Z
Reset
X
L
X
High-Z
Temporary Sector Unprotect
X
VID
AIN
DIN
High-Z