Am29LV800B
15
P R E L I M I N A R Y
mand. The device then enters the autoselect mode,
and the system may read at any address any number
of times, without initiating another command sequence.
A read cycle at address XX00h retrieves the manufac-
turer code. A read cycle at address XX01h in word
mode (or 02h in byte mode) returns the device code. A
read cycle containing a sector address (SA) and the
address 02h in word mode (or 04h in byte mode) re-
turns 01h if that sector is protected, or 00h if it is unpro-
tected. Refer to Tables 2 and 3 for valid sector
addresses.
The system must write the reset command to exit the
autoselect mode and return to reading array data.
Word/Byte Program Command Sequence
The system may program the device by word or byte,
depending on the state of the BYTE# pin. Program-
ming is a four-bus-cycle operation. The program com-
mand sequence is initiated by writing two unlock write
cycles, followed by the program set-up command. The
program address and data are written next, which in
turn initiate the Embedded Program algorithm. The
system is not required to provide further controls or tim-
ings. The device automatically provides internally gen-
erated program pulses and verifies the programmed
cell margin. Table 5 shows the address and data re-
quirements for the byte program command sequence.
When the Embedded Program algorithm is complete,
the device then returns to reading array data and ad-
dresses are no longer latched. The system can deter-
mine the status of the program operation by using
DQ7, DQ6, or RY/BY#. See “Write Operation Status”
for information on these status bits.
Any commands written to the device during the Em-
bedded Program Algorithm are ignored. Note that a
hardware reset
immediately terminates the program-
ming operation. The program command sequence
should be reinitiated once the device has reset to read-
ing array data, to ensure data integrity.
Programming is allowed in any sequence and across
sector boundaries.
A bit cannot be programmed
from a “0” back to a “1”.
Attempting to do so may halt
the operation and set DQ5 to “1”, or cause the Data#
Polling algorithm to indicate the operation was suc-
cessful. However, a succeeding read will show that the
data is still “0”. Only erase operations can convert a “0”
to a “1”.
Unlock Bypass Command Sequence
The unlock bypass feature allows the system to pro-
gram bytes or words to the device faster than using the
standard program command sequence. The unlock by-
pass command sequence is initiated by first writing two
unlock cycles. This is followed by a third write cycle
containing the unlock bypass command, 20h. The de-
vice then enters the unlock bypass mode. A two-cycle
unlock bypass program command sequence is all that
is required to program in this mode. The first cycle in
this sequence contains the unlock bypass program
command, A0h; the second cycle contains the program
address and data. Additional data is programmed in
the same manner. This mode dispenses with the initial
two unlock cycles required in the standard program
command sequence, resulting in faster total program-
ming time. Table 5 shows the requirements for the com-
mand sequence.
During the unlock bypass mode, only the Unlock By-
pass Program and Unlock Bypass Reset commands
are valid. To exit the unlock bypass mode, the system
must issue the two-cycle unlock bypass reset com-
mand sequence. The first cycle must contain the data
90h; the second cycle the data 00h. Addresses are
don’t care for both cycles. The device then returns to
reading array data.
Figure 3 illustrates the algorithm for the program oper-
ation. See the Erase/Program Operations table in “AC
Characteristics” for parameters, and to Figure 17 for
timing diagrams.