3.2x2.8mm SMD LED WITH CERAMIC SUBSTRATE
SPEC NO: DSAI6852
REV NO: V.4
DATE: MAY/04/2009
PAGE: 8 OF 11
APPROVED: WYNEC
CHECKED: Allen Liu
DRAWN: Ting.Li
ERP: 1212000029
JEDEC Moisture Sensitivity:
Level
Floor Life
Soak Requirements
Standard
Accelerated Equivalent
Time
Conditions
Time (hours)
Conditions
Time (hours)
Conditions
2a
4 weeks
≤ 30 °C / 60% RH
6962
+ 5 / - 0
30 °C / 60% RH
120
+ 1 / - 0
60 °C / 60% RH
Notes:
1. CAUTION - The ‘‘a(chǎn)ccelerated equivalent’’ soak requirements shall not be used until correlation of damage response, including electrical, after
soak and reflow is established with the ‘‘standard’’ soak requirements or if the known activation energy for diffusion is 0.4 - 0.48 eV. Accelerated
soak times may vary due to material properties, e.g., mold compound, encapsulant, etc. JEDEC document JESD22-A120 provides a method for
determining the diffusion coefficient.
2. The standard soak time includes a default value of 24 hours for semiconductor manufacturer’s exposure time (MET) between bake and bag and
includes the maximum time allowed out of the bag at the distributor’s facility.
If the actual MET is less than 24 hours the soak time may be reduced. For soak conditions of 30 °C/60% RH the soak time is reduced by one hour
For each hour the MET is less than 24 hours. For soak conditions of 60 °C/60% RH, the soak time is reduced by one hour for each five hours the
MET is less than 24 hours.
If the actual MET is greater than 24 hours the soak time must be increased. If soak conditions are 30 °C/60% RH, the soak time is increased one
Hour for each hour that the actual MET exceeds 24 hours. If soak conditions are 60 °C/60% RH, the soak time is increased one hour for each five
Hours that the actual MET exceeds 24 hours.
3. Supplier may extend the soak times at their own risk.
ESD Protection During Production
Electric static discharge can result when static-sensitive products come in contact with the operator or other conductors.
The following procedures may decrease the possibility of ESD damage:
1.Minimize friction between the product and surroundings to avoid static buildup.
2.All production machinery and test instruments must be electrically grounded.
3.Operators must wear anti-static bracelets.
4.Wear anti-static suit when entering work areas with conductive machinery.
5.Set up ESD protection areas using grounded metal plating for component handling.
6.All workstations that handle IC and ESD-sensitive components must maintain an electrostatic potential of 150V or less.
7.Maintain a humidity level of 50% or higher in production areas.
8.Use anti-static packaging for transport and storage.
9.All anti-static equipment and procedures should be periodically inspected and evaluated for proper functionality.
Heat Generation:
1.Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making
the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the
circuit board and density of LED placement on the board ,as well as other components. It is necessary to avoid intense heat
generation and operate within the maximum ratings given in this specification.
2.Please determine the operating current with consideration of the ambient temperature local to the LED and refer to the plot
of Permissible Forward current vs. Ambient temperature on CHARACTERISTICS in this specification. Please also take meas
ures to remove heat from the area near the LED to improve the operational characteristics on the LED.
3.The equation ① indicates correlation between Tj and Ta ,and the equation ② indicates correlation between Tj and Ts
Tj = Ta + Rthj-a *W ………
①
Tj = Ts + Rthj-s *W ………
②
Tj = dice junction temperature: °C
Ta = ambient temperature:°C
Ts = solder point temperature:°C
Rthj-a = heat resistance from dice junction temperature to ambient temperature : °C/ W
Rthj-s = heat resistance from dice junction temperature to Ts measuring point : °C/ W
W = inputting power (IFx VF) : W