Datasheet
www.rohm.com
TSZ02201-0RAR0G200100-1-2
2012 ROHM Co., Ltd. All rights reserved.
24/29
26.OCT.2012 Rev.002
TSZ2211115001
BA3472xxx, BA3472RFVM, BA3474xxx, BA3474RFV
0
200
400
600
800
1000
0
25
50
75
100
125
許容
損失
Pd
[
m
W
]
周囲 溫度 Ta [℃ ]
0
200
400
600
800
1000
0
25
50
75
100
125
許容
損失
Pd
[
m
W
]
周囲 溫度 Ta [℃ ]
0
200
400
600
800
1000
0
25
50
75
100
125
許容
損失
Pd
[
m
W
]
周囲 溫度 Ta [℃ ]
0
200
400
600
800
1000
1200
1400
1600
1800
0
25
50
75
100
125
許
容損失
Pd
[
m
W
]
周囲 溫度 Ta [℃ ]
●Power Dissipation
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.
Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal
resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead
frame of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called
thermal resistance, represented by the symbol
θja℃/W.The temperature of IC inside the package can be estimated by this
thermal resistance. Figure 52. (a) shows the model of thermal resistance of the package. Thermal resistance
θja, ambient
temperature Ta, maximam junction temperature Tjmax, and power dissipation Pd can be calculated by the equation below:
θja = (Tjmax-Ta) / Pd
℃/W
·····
(Ⅰ)
Derating curve in Figure 52. (b) indicates power that can be consumed by IC with reference to ambient temperature. Power
that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal
resistance
θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package
condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value
measured at a specified condition. Figure 53. (c) ~ (f) shows a derating curve for an example of BA3472, BA3474,
BA3472R, BA3474R.
(*26)
(*27)
(*28)
(*29)
(*30)
(*31)
(*32)
(*33)
(*34)
(*35)
(*36)
(*37)
(*38)
Unit
6.2
5.5
5.4
5.0
4.8
7.5
5.7
5.0
4.9
7.0
6.8
13.5
9.5
mW/℃
When using the unit above Ta=25℃, subtract the value above per degree℃.
(
*26)(*27)(*28)(*29)(*30)(*34)(*35)(*36) Mounted on a FR4 glass epoxy 1 layers PCB 70mm×70mm×1.6mm (occupied copper area:below 3%).
(*33) Mounted on a FR4 glass epoxy 2 layers PCB 70mm×70mm×1.6mm (occupied copper area:15mm×15mm).
(*32) (*38) Mounted on a FR4 glass epoxy 2 layers PCB 70mm×70mm×1.6mm (occupied copper area:70mm×70mm).
(*31) (*37) Mounted on a FR4 glass epoxy 4 layers PCB 70mm×70mm×1.6mm (occupied copper area:70mm×70mm).
Figure 53. Derating curve
Figure 52. Thermal resistance and derating curve
(a) Thermal resistance
(b) Derating curve
周囲溫度 Ta [℃]
チップ 表面溫度 Tj [℃]
消費電力 P [W]
Ambient temperature
Chip surface temperature
0
50
75
100
125
150
25
P1
P2
Pd (max)
LSI
の 消費電 力 [W]
θ' ja2
θ' ja1
Tj ' (max)
θja2 < θja1
周囲 溫度 Ta [℃ ]
θ ja2
θ ja1
Tj (max)
Ambient temperature
Power dissipation of LSI
Power dissipation Pd [W]
θja=(Tjmax-Ta)/Pd ℃/W
(c)BA3472
P
O
WE
R
D
IS
S
IP
A
T
ION
P
d
[mW
]
P
O
WE
R
D
IS
S
IP
A
T
ION
P
d
[
mW
]
P
O
WE
R
D
IS
S
IP
A
T
ION
P
d
[
mW
]
P
O
WE
R
D
ISS
IPAT
IO
N
P
d
[mW
]
Ambient Temperature: Ta [℃]
(e)BA3472R
(f)BA3474R
BA3472FVM(*30)
BA3472F(*26)
BA3472FV(*27)
BA3474F(*34)
BA3474FV(*35)
BA3472FJ(*28)
BA3472FVT(*29)
BA3474FVJ(*36)
BA3472RFVM(*31)
BA3474RFV(*37)
BA3472RFVM(*33)
BA3472RFVM(*30)
BA3474RFV(*38)
BA3474RFV(*35)
(d)BA3474