Datasheet
www.rohm.com
TSZ02201-0RAR0G200100-1-2
2012 ROHM Co., Ltd. All rights reserved.
9/29
26.OCT.2012 Rev.002
TSZ2211115001
BA3472xxx, BA3472RFVM, BA3474xxx, BA3474RFV
Description of Electrical Characteristics
Described below are descriptions of the relevant electrical terms
Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents.
1. Absolute maximum ratings
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of
electrical characteristics or damage to the part itself as well as peripheral components.
1.1 Power supply voltage (VCC/VEE)
Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without
causing deterioration of the electrical characteristics or destruction of the internal circuitry.
1.2 Differential input voltage (Vid)
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without
damaging the IC.
1.3 Input common-mode voltage range (Vicm)
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing
deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the
common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the
electric characteristics instead.
1.4 Power dissipation (Pd)
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For
packaged products, Pd is determined by the maximum junction temperature and the thermal resistance.
2. Electrical characteristics
2.1 Input offset voltage (Vio)
Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the
input voltage difference required for setting the output voltage at 0 V.
2.2 Input offset current (Iio)
Indicates the difference of input bias current between the non-inverting and inverting terminals.
2.3 Input bias current (Ib)
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at
non-inverting terminal and input bias current at inverting terminal.
2.4 Circuit current (ICC)
Indicates the current of the IC itself that flows under specified conditions and during no-load steady state.
2.5 Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL)
Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into
maximum output voltage High and low. Maximum output voltage high indicates the upper limit of output voltage.
Maximum output voltage low indicates the lower limit.
2.6 Large signal voltage gain (Av)
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting
terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.
AV = (output voltage fluctuation) / (input offset fluctuation)
2.7 Input common-mode voltage range (Vicm)
Indicates the input voltage range under which the IC operates normally.
2.8 Common-mode rejection ratio (CMRR)
Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the
fluctuation of DC.
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)
2.9 Power supply rejection ratio (PSRR)
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of
DC. PSRR= (Change of power supply voltage)/(Input offset fluctuation)
2.10 Output source current/ output sink current (Isource/Isink)
The maximum current that can be output under specific output conditions, it is divided into output source current and
output sink current. The output source current indicates the current flowing out of the IC, and the output sink current
the current flowing into the IC.
2.11 Unity gain frequency (fT)
Indicates a frequency where the voltage gain of operational amplifier is 1.
2.12 Gain Band Width (GBW)
Indicates to multiply by the frequency and the gain where the voltage gain decreases 6dB/octave.
2.13 Slew Rate (SR)
SR is a parameter that shows movement speed of operational amplifier. It indicates rate of variable output voltage
as unit time.
2.14 Channel separation (CS)
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage
of driven channel.