For more information www.linear.com/LTC2641 applicaTions inForMaTion such as" />
參數(shù)資料
型號(hào): DC1096A
廠商: Linear Technology
文件頁數(shù): 8/24頁
文件大?。?/td> 0K
描述: BOARD DAC LTC2642-16
軟件下載: QuikEval System
設(shè)計(jì)資源: DC1096A Design File
DC1096A Schematic
標(biāo)準(zhǔn)包裝: 1
系列: QuikEval™
DAC 的數(shù)量: 1
位數(shù): 16
數(shù)據(jù)接口: MICROWIRE?,QSPI?,串行,SPI?
設(shè)置時(shí)間: 1µs
DAC 型: 電壓
工作溫度: 0°C ~ 70°C
已供物品:
已用 IC / 零件: LTC2642-16
LTC2641/LTC2642
16
26412fc
For more information www.linear.com/LTC2641
applicaTions inForMaTion
such as the LTC6078 is suitable, if the application does
not require linear operation very near to GND, or zero scale
(Figure 2). The LTC6078 typically swings to within 1mV of
GND if it is not required to sink any load current. For an
LSB size of 38V, 1mV represents 26 missing codes near
zero scale. Linearity will be degraded over a somewhat
larger range of codes above GND. It is also unavoidable
that settling time and transient performance will degrade
whenever a single supply amplifier is operated very close
to GND, or to the positive supply rail.
The small LSB size of a 16-bit DAC, coupled with the tight
accuracy specifications on the LTC2641/LTC2642, means
that the accuracy and input specifications for the external
op amp are critical for overall DAC performance.
Op Amp Specifications and Unipolar DAC Accuracy
Most op amp accuracy specifications convert easily to
DAC accuracy.
Op amp input bias current on the noninverting (+) input is
equivalent to an IL loading the DAC VOUT pin and therefore
produces a DAC zero-scale error (ZSE) (see Unbuffered
Operation):
ZSE = –IB(IN+) ROUT [Volts]
In 16-bit LSBs:
ZSE = –IB IN
+
( ) 6.2k
66k
VREF
LSB
Op amp input impedance, RIN, is equivalent to an RL
loading the LTC2641/LTC2642 VOUT pin, and produces
a gain error of:
GE = –66k
1+ 6.2k
RIN
LSB
Op amp offset voltage, VOS, corresponds directly to DAC
zero code offset error, ZSE:
ZSEV
k
V
LSB
OS
REF
=
[]
66
Temperature effects also must be considered. Over the
–40°C to 85°C industrial temperature range, an offset
voltage temperature coefficient (referenced to 25°C) of
0.6μV/°C will add 1LSB of zero-scale error. Also, IBIAS and
the VOFFSET error it causes, will typically show significant
relative variation over temperature.
Op amp open-loop gain, AVOL, contributes to DAC gain
error (GE):
GE
k
A
LSB
VOL
=
[]
66
Op amp input common mode rejection ratio (CMRR) is
an input-referred error that corresponds to a combina-
tion of gain error (GE) and INL, depending on the op amp
architecture and operating conditions. A conservative
estimate of total CMRR error is:
Error = 10
CMRR
20
VCMRR_RANGE
VREF
66k LSB
where VCMRR_RANGE is the voltage range that CMRR (in
dB)isspecifiedover.OpampTypicalPerformanceCharac-
teristics graphs are useful to predict the impact of CMRR
errors on DAC performance. Typically, a precision op amp
will exhibit a fairly linear CMRR behavior (corresponding
to DAC gain error only) over most of the common mode
input range (CMR), and become nonlinear and produce
significant errors near the edge of the CMR.
Rail-to-rail input op amps are a special case, because they
have 2 distinct input stages, one with CMR to GND and
the other with CMR to V+. This results in a “crossover”
CM input region where operation switches between the
two input stages.
The LTC6078 rail-to-rail input op amp typically exhibits
remarkably low crossover linearity error, as shown in the
VOS vs VCM Typical Performance Characteristics graphs
(see the LTC6078 data sheet). Crossover occurs at CM
inputs about 1V below V+, and an LTC6078 operating as
a unipolar DAC buffer with VREF = 2.5V and V+ = 5V will
typically add only about 1LSB of GE and almost no INL
error due to CMRR. Even in a full rail-to-rail application,
with VREF = V+ = 5V, a typical LTC6078 will add only about
1LSB of INL at 16-bits.
相關(guān)PDF資料
PDF描述
RBM15DSEF-S243 CONN EDGECARD 30POS .156 EYELET
REC3-2415DRWZ/H6/A CONV DC/DC 3W 9-36VIN +/-15VOUT
VI-JTL-EZ CONVERTER MOD DC/DC 28V 25W
GMM10DSES-S243 CONN EDGECARD 20POS .156 EYELET
RYM10DTBS-S189 CONN EDGECARD 20POS R/A .156 SLD
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
DC1096B 制造商:Linear Technology 功能描述:BOARD EVAL FOR LTC2641/2 制造商:Linear Technology 功能描述:DEMO BOARD, LTC2642A-16 16BIT DAC; Silicon Manufacturer:Linear Technology; Silicon Core Number:LTC2642A-16; Kit Application Type:Data Converter; Application Sub Type:DAC; Kit Contents:Demo Board LTC2642A-16
DC1096D03XO_D4X WAF 制造商:Fairchild Semiconductor Corporation 功能描述:
DC1096D03XY_D4X WAF 制造商:Fairchild Semiconductor Corporation 功能描述:
DC1096D04XR_D4X WAF 制造商:Fairchild Semiconductor Corporation 功能描述:
DC1099A 功能描述:BOARD EVAL LTC2953 RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評(píng)估演示板和套件 系列:- 標(biāo)準(zhǔn)包裝:1 系列:- 主要目的:電信,線路接口單元(LIU) 嵌入式:- 已用 IC / 零件:IDT82V2081 主要屬性:T1/J1/E1 LIU 次要屬性:- 已供物品:板,電源,線纜,CD 其它名稱:82EBV2081