PRELIMINARY
Search ROM [F0h]
When a system is initially brought up, the bus master might not know the number of devices on the
1-Wire bus or their 64-bit registration numbers. The search ROM command allows the bus master to use
a process of elimination to identify the 64-bit numbers of all slave devices on the bus. The search ROM
process is the repetition of a simple 3-step routine: read a bit, read the complement of the bit, then write
the desired value of that bit. The bus master performs this 3-step routine on each bit of the registration
number. After one complete pass, the bus master knows the 64-bit number of one device. Additional
passes will identify the registration numbers of the remaining devices. See Chapter 5 of the Book of
DS19xx iButton Standards for a detailed discussion of a search ROM, including an actual example.
DS2432
24 of 30
Skip ROM [CCh]
This command can save time in a single drop bus system by allowing the bus master to access the
memory and SHA functions without providing the 64-bit registration number. If more than one slave is
present on the bus and, for example, a read command is issued following the Skip ROM command, data
collision will occur on the bus as multiple slaves transmit simultaneously (open drain pull-downs will
produce a wired-AND result).
Overdrive Skip ROM [3Ch]
On a single-drop bus this command can save time by allowing the bus master to access the memory and
SHA functions without providing the 64-bit registration number. Unlike the normal Skip ROM command
the Overdrive Skip ROM sets the DS2432 in the Overdrive Mode (OD = 1). All communication
following this command code has to occur at Overdrive Speed until a reset pulse of minimum 480 μs
duration resets all devices on the bus to regular speed (OD = 0).
When issued on a multidrop bus this command will set all Overdrive-supporting devices into Overdrive
mode. To subsequently address a specific Overdrive-supporting device, a reset pulse at Overdrive speed
has to be issued followed by a Match ROM or Search ROM command sequence. This will speed up the
search process. If more than one Overdrive-supporting slave is present on the bus and the Overdrive Skip
ROM command is followed by a read command, data collision will occur on the bus as multiple slaves
transmit simultaneously (open drain pull-downs will produce a wired-AND result).
Overdrive Match ROM [69h]
The Overdrive Match ROM command, followed by a 64-bit registration number transmitted at Overdrive
Speed, allows the bus master to address a specific DS2432 on a multidrop bus and to simultaneously set it
in Overdrive Mode. Only the DS2432 that exactly matches the 64-bit number will respond to the
subsequent memory or SHA function command. Slaves already in Overdrive mode from a previous
Overdrive Skip or a successful Overdrive Match command will remain in Overdrive mode. All Over-
drive-capable slaves will return to regular speed at the next Reset Pulse of minimum 480 μs duration. The
Overdrive Match ROM command can be used with a single or multiple devices on the bus.
Resume Command [A5h]
In a typical application the DS2432 needs to be accessed several times to write a full 32-byte page. In a
multidrop environment this means that the 64-bit registration number of a Match ROM command has to
be repeated for every access. To maximize the data throughput in a multidrop environment the Resume
Command function was implemented. This function checks the status of the RC bit and, if it is set,
directly transfers control to the Memory and SHA functions, similar to a Skip ROM command. The only
way to set the RC bit is through successfully executing the Match ROM, Search ROM or Overdrive
Match ROM command. Once the RC bit is set, the device can repeatedly be accessed through the Resume
Command function. Accessing another device on the bus will clear the RC bit, preventing two or more
devices from simultaneously responding to the Resume Command function.