參數(shù)資料
型號: DSPIC30F3011-20I/P
廠商: Microchip Technology
文件頁數(shù): 31/228頁
文件大?。?/td> 0K
描述: IC DSPIC MCU/DSP 24K 40DIP
產(chǎn)品培訓(xùn)模塊: dsPIC30F Quadrature Encoder Interface
Serial Communications using dsPIC30F I2C
Serial Communications using dsPIC30F SPI
Serial Communications using dsPIC30F UART
dsPIC30F 12 bit ADC - Part 2
dsPIC30F Addressing Modes - Part 1
dsPIC30F Architecture - Part 1
dsPIC30F DSP Engine & ALU
dsPIC30F Interrupts
dsPIC30F Motor Control PWM
dsPIC Timers
Asynchronous Stimulus
dsPIC30F Addressing Modes - Part 2
dsPIC30F Architecture - Part 2
dsPIC30F 12-bit ADC Part 1
標(biāo)準(zhǔn)包裝: 10
系列: dsPIC™ 30F
核心處理器: dsPIC
芯體尺寸: 16-位
速度: 20 MIPS
連通性: I²C,SPI,UART/USART
外圍設(shè)備: 高級欠壓探測/復(fù)位,電機(jī)控制 PWM,QEI,POR,PWM,WDT
輸入/輸出數(shù): 30
程序存儲(chǔ)器容量: 24KB(8K x 24)
程序存儲(chǔ)器類型: 閃存
EEPROM 大?。?/td> 1K x 8
RAM 容量: 1K x 8
電壓 - 電源 (Vcc/Vdd): 2.5 V ~ 5.5 V
數(shù)據(jù)轉(zhuǎn)換器: A/D 9x10b
振蕩器型: 內(nèi)部
工作溫度: -40°C ~ 85°C
封裝/外殼: 40-DIP(0.600",15.24mm)
包裝: 管件
配用: AC30F003-ND - MODULE SOCKET DSPIC30F 40DIP
ACICE0206-ND - ADAPTER MPLABICE 40P 600 MIL
其它名稱: DSPIC30F3011-20IP
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁當(dāng)前第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁
126
XMEGA A [MANUAL]
8077I–AVR–11/2012
vector. The interrupt vector is normally a jump to the interrupt handler; the software routine that handles the interrupt.
After returning from the interrupt handler, program execution continues from where it was before the interrupt occurred.
One instruction is always executed before any pending interrupt is served.
The PMIC status register contains state information that ensures that the PMIC returns to the correct interrupt level when
the RETI (interrupt return) instruction is executed at the end of an interrupt handler. Returning from an interrupt will return
the PMIC to the state it had before entering the interrupt. The status register (SREG) is not saved automatically upon an
interrupt request. The RET (subroutine return) instruction cannot be used when returning from the interrupt handler
routine, as this will not return the PMIC to its correct state.
12.4
Interrupts
All interrupts and the reset vector each have a separate program vector address in the program memory space. The
lowest address in the program memory space is the reset vector. All interrupts are assigned individual control bits for
enabling and setting the interrupt level, and this is set in the control registers for each peripheral that can generate
interrupts. Details on each interrupt are described in the peripheral where the interrupt is available.
All interrupts have an interrupt flag associated with it. When the interrupt condition is present, the interrupt flag will be set,
even if the corresponding interrupt is not enabled. For most interrupts, the interrupt flag is automatically cleared when
executing the interrupt vector. Writing a logical one to the interrupt flag will also clear the flag. Some interrupt flags are
not cleared when executing the interrupt vector, and some are cleared automatically when an associated register is
accessed (read or written). This is described for each individual interrupt flag.
If an interrupt condition occurs while another, higher priority interrupt is executing or pending, the interrupt flag will be set
and remembered until the interrupt has priority. If an interrupt condition occurs while the corresponding interrupt is not
enabled, the interrupt flag will be set and remembered until the interrupt is enabled or the flag is cleared by software.
Similarly, if one or more interrupt conditions occur while global interrupts are disabled, the corresponding interrupt flag
will be set and remembered until global interrupts are enabled. All pending interrupts are then executed according to their
order of priority.
Interrupts can be blocked when executing code from a locked section; e.g., when the boot lock bits are programmed.
This feature improves software security. Refer to “Memory Programming” on page 353 for details on lock bit settings.
Interrupts are automatically disabled for up to four CPU clock cycles when the configuration change protection register is
written with the correct signature. Refer to “Configuration Change Protection” on page 13 for more details.
12.4.1 NMI – Non-Maskable Interrupts
Which interrupts represent NMI and which represent regular interrupts cannot be selected. Non-maskable interrupts
must be enabled before they can be used. Refer to the device datasheet for NMI present on each device.
An NMI will be executed regardless of the setting of the I bit, and it will never change the I bit. No other interrupts can
interrupt a NMI handler. If more than one NMI is requested at the same time, priority is static according to the interrupt
vector address, where the lowest address has highest priority.
12.4.2 Interrupt Response Time
The interrupt response time for all the enabled interrupts is three CPU clock cycles, minimum; one cycle to finish the
ongoing instruction and two cycles to store the program counter to the stack. After the program counter is pushed on the
stack, the program vector for the interrupt is executed. The jump to the interrupt handler takes three clock cycles.
If an interrupt occurs during execution of a multicycle instruction, this instruction is completed before the interrupt is
served. See Figure 12-2 on page 127 for more details.
相關(guān)PDF資料
PDF描述
DSPIC30F3013-20I/ML IC DSPIC MCU/DSP 24K 44QFN
DSPIC30F4011-30I/ML IC DSPIC MCU/DSP 48K 44QFN
DSPIC30F4013-30I/ML IC DSPIC MCU/DSP 48K 44QFN
DSPIC30F5013-30I/PT IC DSPIC MCU/DSP 66K 80TQFP
DSPIC30F5015-30I/PT IC DSPIC MCU/DSP 66K 64TQFP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
DSPIC30F3011-30I/ML 功能描述:數(shù)字信號處理器和控制器 - DSP, DSC Motor Control RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時(shí)鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時(shí)器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT
DSPIC30F3011-30I/P 功能描述:數(shù)字信號處理器和控制器 - DSP, DSC Motor Control RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時(shí)鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時(shí)器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT
DSPIC30F3011-30I/PT 功能描述:數(shù)字信號處理器和控制器 - DSP, DSC Motor Control RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時(shí)鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時(shí)器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT
DSPIC30F3011-30I/PT 制造商:Microchip Technology Inc 功能描述:IC DSC 16BIT 24KB 40MHZ 5.5V TQFP-44
dsPIC30F3011T-20E/ML 功能描述:數(shù)字信號處理器和控制器 - DSP, DSC 44LD 20MIPS 24 KB RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲(chǔ)器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時(shí)鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時(shí)器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT