FN7386.6 July 7, 2009 EL5156 Product Description The EL5156, EL5157, EL5256, and EL5257 are wide bandwidth, single or dual supply, low p" />
參數(shù)資料
型號: EL5256IY-T7
廠商: Intersil
文件頁數(shù): 2/17頁
文件大?。?/td> 0K
描述: IC AMP DUAL 600MHZ V-FB 10-MSOP
標準包裝: 1,500
放大器類型: 電壓反饋
電路數(shù): 2
轉換速率: 700 V/µs
增益帶寬積: 210MHz
-3db帶寬: 600MHz
電流 - 輸入偏壓: 200pA
電壓 - 輸入偏移: 500µV
電流 - 電源: 6mA
電流 - 輸出 / 通道: 140mA
電壓 - 電源,單路/雙路(±): 4.5 V ~ 12 V,±2.25 V ~ 6 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 10-TFSOP,10-MSOP(0.118",3.00mm 寬)
供應商設備封裝: 10-MSOP
包裝: 帶卷 (TR)
10
FN7386.6
July 7, 2009
EL5156 Product Description
The EL5156, EL5157, EL5256, and EL5257 are wide
bandwidth, single or dual supply, low power and low offset
voltage feedback operational amplifiers. Both amplifiers are
internally compensated for closed loop gain of +1 or greater.
Connected in voltage follower mode and driving a 500
Ω
load, the -3dB bandwidth is about 610MHz. Driving a 150
Ω
load and a gain of 2, the bandwidth is about 180MHz while
maintaining a 600V/s slew rate. The EL5156 and EL5256
are available with a power-down pin to reduce power to
17A typically while the amplifier is disabled.
Input, Output and Supply Voltage Range
The EL5156 and EL5157 families have been designed to
operate with supply voltage from 5V to 12V. That means for
single supply application, the supply voltage is from 5V to
12V. For split supplies application, the supply voltage is from
±2.5V to ±5V. The amplifiers have an input common mode
voltage range from 1.5V above the negative supply (VS- pin)
to 1.5V below the positive supply (VS+ pin). If the input
signal is outside the above specified range, it will cause the
output signal to be distorted.
The outputs of the EL5156 and EL5157 families can swing
from -4V to 4V for VS = ±5V. As the load resistance becomes
lower, the output swing is lower. If the load resistor is 500
Ω,
the output swing is about -4V at a 4V supply. If the load
resistor is 150
Ω, the output swing is from -3.5V to 3.5V.
Choice of Feedback Resistor and Gain Bandwidth
Product
For applications that require a gain of +1, no feedback
resistor is required. Just short the output pin to the inverting
input pin. For gains greater than +1, the feedback resistor
forms a pole with the parasitic capacitance at the inverting
input. As this pole becomes smaller, the amplifier's phase
margin is reduced. This causes ringing in the time domain
and peaking in the frequency domain. Therefore, RF can't be
very big for optimum performance. If a large value of RF
must be used, a small capacitor in the few Pico farad range
in parallel with RF can help to reduce the ringing and
peaking at the expense of reducing the bandwidth.
For gain of +1, RF = 0 is optimum. For the gains other than
+1, optimum response is obtained with RF between 500Ω to
750
Ω.
The EL5156 and EL5157 families have a gain bandwidth
product of 210MHz. For gains
≥5, its bandwidth can be
predicted by Equation 1:
Video Performance
For good video performance, an amplifier is required to
maintain the same output impedance and the same
frequency response as DC levels are changed at the output.
This is especially difficult when driving a standard video load
of 150
Ω, because of the change in output current with DC
level. The dG and dP for these families are about 0.006%
and 0.04%, while driving 150
Ω at a gain of 2. Driving high
impedance loads would give a similar or better dG and dP
performance.
Driving Capacitive Loads and Cables
The EL5156 and EL5157 families can drive 27pF loads in
parallel with 500
Ω with less than 5dB of peaking at gain of
+1. If less peaking is desired in applications, a small series
resistor (usually between 5
Ω to 50Ω) can be placed in series
with the output to eliminate most peaking. However, this will
reduce the gain slightly. If the gain setting is greater than 1,
the gain resistor RG can then be chosen to make up for any
gain loss which may be created by the additional series
resistor at the output.
When used as a cable driver, double termination is always
recommended for reflection-free performance. For those
applications, a back-termination series resistor at the
amplifier's output will isolate the amplifier from the cable and
allow extensive capacitive drive. However, other applications
may have high capacitive loads without a back-termination
resistor. Again, a small series resistor at the output can help
to reduce peaking.
Disable/Power-Down
The EL5156 and EL5256 can be disabled and their output
placed in a high impedance state. The turn-off time is about
330ns and the turn-on time is about 130ns. When disabled,
the amplifier's supply current is reduced to 17A typically,
thereby effectively eliminating the power consumption. The
amplifier's power-down can be controlled by standard TTL or
CMOS signal levels at the ENABLE pin. The applied logic
signal is relative to VS- pin. Letting the ENABLE pin float or
applying a signal that is less than 0.8V above VS- will enable
the amplifier. The amplifier will be disabled when the signal
at ENABLE pin is above VS+ - 1.5V.
Output Drive Capability
The EL5156 and EL5157 families do not have internal short
circuit protection circuitry. They have a typical short circuit
current of 95mA and 70mA. If the output is shorted
indefinitely, the power dissipation could easily overheat the
die or the current could eventually compromise metal
integrity. Maximum reliability is maintained if the output
current never exceeds ±40mA. This limit is set by the design
of the internal metal interconnect. Note that in transient
applications, the part is robust.
Power Dissipation
With the high output drive capability of the EL5152 and
EL5153 families, it is possible to exceed the +125°C
absolute maximum junction temperature under certain load
current conditions. Therefore, it is important to calculate the
maximum junction temperature for an application to
Gain BW
210MHz
=
×
(EQ. 1)
EL5156, EL5157, EL5256, EL5257
相關PDF資料
PDF描述
T11-211-3.5/8-394 CIRCUIT BRKR THERMAL 3.5A 1POLE
2040.0715 FUSE 1A 250VAC RADIAL SLOW
EL5252IY-T7 IC AMP DUAL 300MHZ V-FB 10-MSOP
EL5251IY-T7 IC AMP DUAL 200MHZ V-FB 8-MSOP
2040.0714 FUSE 800MA 250VAC RADIAL SLOW
相關代理商/技術參數(shù)
參數(shù)描述
EL5257 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:1mV Voltage Offset, 600MHz Amplifiers
EL5257IS 功能描述:運算放大器 - 運放 600 MHz V-FB RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風格:SMD/SMT 封裝 / 箱體:QFN-16 轉換速度:0.89 V/us 關閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel
EL5257IS-T13 功能描述:IC AMP VFA DUAL 600MHZ 8-SOIC RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:50 系列:- 放大器類型:通用 電路數(shù):2 輸出類型:滿擺幅 轉換速率:1.8 V/µs 增益帶寬積:6.5MHz -3db帶寬:4.5MHz 電流 - 輸入偏壓:5nA 電壓 - 輸入偏移:100µV 電流 - 電源:65µA 電流 - 輸出 / 通道:35mA 電壓 - 電源,單路/雙路(±):1.8 V ~ 5.25 V,±0.9 V ~ 2.625 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:10-TFSOP,10-MSOP(0.118",3.00mm 寬) 供應商設備封裝:10-MSOP 包裝:管件
EL5257IS-T7 功能描述:IC AMP DUAL 600MHZ V-FB 8-SOIC RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:1,000 系列:- 放大器類型:電壓反饋 電路數(shù):4 輸出類型:滿擺幅 轉換速率:33 V/µs 增益帶寬積:20MHz -3db帶寬:30MHz 電流 - 輸入偏壓:2nA 電壓 - 輸入偏移:3000µV 電流 - 電源:2.5mA 電流 - 輸出 / 通道:30mA 電壓 - 電源,單路/雙路(±):4.5 V ~ 16.5 V,±2.25 V ~ 8.25 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:14-SOIC(0.154",3.90mm 寬) 供應商設備封裝:14-SOIC 包裝:帶卷 (TR)
EL5257IY 功能描述:運算放大器 - 運放 600 MHz V-FB RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風格:SMD/SMT 封裝 / 箱體:QFN-16 轉換速度:0.89 V/us 關閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel