參數(shù)資料
型號: IDT70V26S55J
廠商: INTEGRATED DEVICE TECHNOLOGY INC
元件分類: DRAM
英文描述: HIGH-SPEED 3.3V 16K x 16 DUAL-PORT STATIC RAM
中文描述: 16K X 16 DUAL-PORT SRAM, 55 ns, PQCC84
封裝: PLASTIC, LCC-84
文件頁數(shù): 15/17頁
文件大?。?/td> 144K
代理商: IDT70V26S55J
6.42
IDT70V26S/L
High-Speed 16K x 16 Dual-Port Static RAM Industrial and Commercial Temperature Ranges
standard Static RAM. Each of the flags has a unique address which
can be accessed by either side through address pins A
0
A
2
. When
accessing the semaphores, none of the other address pins has any
effect.
When writing to a semaphore, only data pin D
0
is used. If a LOW
level is written into an unused semaphore location, that flag will be set
to a zero on that side and a one on the other side (see Truth Table IV).
That semaphore can now only be modified by the side showing the
zero. When a one is written into the same location fromthe same side,
the flag will be set to a one for both sides (unless a semaphore request
fromthe other side is pending) and then can be written to by both sides.
The fact that the side which is able to write a zero into a semaphore
subsequently locks out writes fromthe other side is what makes
semaphore flags useful in interprocessor communications. (A thor-
ough discussion on the use of this feature follows shortly.) A zero
written into the same location fromthe other side will be stored in the
semaphore request latch for that side until the semaphore is freed by
the first side.
When a semaphore flag is read, its value is spread into all data bits
so that a flag that is a one reads as a one in all data bits and a flag
containing a zero reads as all zeros. The read value is latched into one
side
s output register when that side's semaphore select (
SEM
) and
output enable (
OE
) signals go active. This serves to disallow the
semaphore fromchanging state in the mddle of a read cycle due to a
write cycle fromthe other side. Because of this latch, a repeated read
of a semaphore in a test loop must cause either signal (
SEM
or
OE
) to
go inactive or the output will never change.
A sequence WRITE/READ must be used by the semaphore in
order to guarantee that no systemlevel contention will occur. A
processor requests access to shared resources by attempting to write
a zero into a semaphore location. If the semaphore is already in use,
the semaphore request latch will contain a zero, yet the semaphore
flag will appear as one, a fact which the processor will verify by the
subsequent read (see Truth Table IV). As an example, assume a
processor writes a zero to the left port at a free semaphore location. On
a subsequent read, the processor will verify that it has written success-
fully to that location and will assume control over the resource in
question. Meanwhile, if a processor on the right side attempts to write
a zero to the same semaphore flag it will fail, as will be verified by the
fact that a one will be read fromthat semaphore on the right side during
subsequent read. Had a sequence of READ/WRITE been used
instead, systemcontention problems could have occurred during the
gap between the read and write cycles.
It is important to note that a failed semaphore request must be
followed by either repeated reads or by writing a one into the same
location. The reason for this is easily understood by looking at the
simple logic diagramof the semaphore flag in Figure 4. Two sema-
phore request latches feed into a semaphore flag. Whichever latch is
first to present a zero to the semaphore flag will force its side of the
semaphore flag low and the other side HIGH. This condition will
continue until a one is written to the same semaphore request latch.
Should the other side
s semaphore request latch have been written to
a zero in the meantime, the semaphore flag will flip over to the other
side as soon as a one is written into the first side
s request latch. The
second side
s flag will now stay low until its semaphore request latch
is written to a one. Fromthis it is easy to understand that, if a
semaphore is requested and the processor which requested it no
longer needs the resource, the entire systemcan hang up until a one
is written into that semaphore request latch.
The critical case of semaphore timng is when both sides request
a single token by attempting to write a zero into it at the same time. The
semaphore logic is specially designed to resolve this problem If
simultaneous requests are made, the logic guarantees that only one
side receives the token. If one side is earlier than the other in making
the request, the first side to make the request will receive the token. If
both requests arrive at the same time, the assignment will be arbitrarily
made to one port or the other.
One caution that should be noted when using semaphores is that
semaphores alone do not guarantee that access to a resource is
secure. As with any powerful programmng technique, if semaphores
are msused or msinterpreted, a software error can easily happen.
Initialization of the semaphores is not automatic and must be
handled via the initialization programat power-up. Since any sema-
phore request flag which contains a zero must be reset to a one, all
semaphores on both sides should have a one written into themat
initialization fromboth sides to assure that they will be free when
needed.
)%()1
Perhaps the simplest application of semaphores is their applica-
tion as resource markers for the IDT70V26
s Dual-Port RAM. Say the
16K x 16 RAMwas to be divided into two 8K x 16 blocks which were
to be dedicated at any one time to servicing either the left or right port.
Semaphore 0 could be used to indicate the side which would control
the lower section of memory, and Semaphore 1 could be defined as the
indicator for the upper section of memory.
To take a resource, in this example the lower 8K of Dual-Port RAM
the processor on the left port could write and then read a zero in to
Semaphore 0. If this task were successfully completed (a zero was
read back rather than a one), the left processor would assume control
of the lower 8K. Meanwhile the right processor was attempting to gain
control of the resource after the left processor, it would read back a one
in response to the zero it had attempted to write into Semaphore 0. At
this point, the software could choose to try and gain control of the
second 8K section by writing, then reading a zero into Semaphore 1.
If it succeeded in gaining control, it would lock out the left side.
Once the left side was finished with its task, it would write a one to
Semaphore 0 and may then try to gain access to Semaphore 1. If
Semaphore 1 was still occupied by the right side, the left side could
Figure 4. IDT70V26 Semaphore Logic
D
2945 drw 17
0
D
Q
WRITE
D
0
WRITE
D
Q
SEMAPHORE
REQUEST FLIP FLOP
SEMAPHORE
REQUEST FLIP FLOP
L PORT
R PORT
SEMAPHORE
READ
SEMAPHORE
READ
,
相關(guān)PDF資料
PDF描述
IDT70V26S55JI HIGH-SPEED 3.3V 16K x 16 DUAL-PORT STATIC RAM
IDT70V27L15BF ACB 17C 17#1 PIN RECP WALL RM
IDT70V27L15BFI HIGH-SPEED 3.3V 32K x 16 DUAL-PORT STATIC RAM
IDT70V27L15G HIGH-SPEED 3.3V 32K x 16 DUAL-PORT STATIC RAM
IDT70V27L55G HIGH-SPEED 3.3V 32K x 16 DUAL-PORT STATIC RAM
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
IDT70V26S55J8 功能描述:IC SRAM 256KBIT 55NS 84PLCC RoHS:否 類別:集成電路 (IC) >> 存儲器 系列:- 標(biāo)準(zhǔn)包裝:45 系列:- 格式 - 存儲器:RAM 存儲器類型:SRAM - 雙端口,異步 存儲容量:128K(8K x 16) 速度:15ns 接口:并聯(lián) 電源電壓:3 V ~ 3.6 V 工作溫度:0°C ~ 70°C 封裝/外殼:100-LQFP 供應(yīng)商設(shè)備封裝:100-TQFP(14x14) 包裝:托盤 其它名稱:70V25S15PF
IDT70V27L15BF 功能描述:IC SRAM 512KBIT 15NS 144FBGA RoHS:否 類別:集成電路 (IC) >> 存儲器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 格式 - 存儲器:RAM 存儲器類型:SRAM - 雙端口,同步 存儲容量:1.125M(32K x 36) 速度:5ns 接口:并聯(lián) 電源電壓:3.15 V ~ 3.45 V 工作溫度:-40°C ~ 85°C 封裝/外殼:256-LBGA 供應(yīng)商設(shè)備封裝:256-CABGA(17x17) 包裝:帶卷 (TR) 其它名稱:70V3579S5BCI8
IDT70V27L15PF 功能描述:IC SRAM 512KBIT 15NS 100TQFP RoHS:否 類別:集成電路 (IC) >> 存儲器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 格式 - 存儲器:RAM 存儲器類型:SRAM - 雙端口,同步 存儲容量:1.125M(32K x 36) 速度:5ns 接口:并聯(lián) 電源電壓:3.15 V ~ 3.45 V 工作溫度:-40°C ~ 85°C 封裝/外殼:256-LBGA 供應(yīng)商設(shè)備封裝:256-CABGA(17x17) 包裝:帶卷 (TR) 其它名稱:70V3579S5BCI8
IDT70V27L15PF8 功能描述:IC SRAM 512KBIT 15NS 100TQFP RoHS:否 類別:集成電路 (IC) >> 存儲器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 格式 - 存儲器:RAM 存儲器類型:SRAM - 雙端口,同步 存儲容量:1.125M(32K x 36) 速度:5ns 接口:并聯(lián) 電源電壓:3.15 V ~ 3.45 V 工作溫度:-40°C ~ 85°C 封裝/外殼:256-LBGA 供應(yīng)商設(shè)備封裝:256-CABGA(17x17) 包裝:帶卷 (TR) 其它名稱:70V3579S5BCI8
IDT70V27L15PFG 功能描述:IC SRAM 512KBIT 15NS 100TQFP RoHS:是 類別:集成電路 (IC) >> 存儲器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- 格式 - 存儲器:EEPROMs - 串行 存儲器類型:EEPROM 存儲容量:1K (128 x 8) 速度:100kHz 接口:UNI/O?(單線) 電源電壓:1.8 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 封裝/外殼:8-TSSOP,8-MSOP(0.118",3.00mm 寬) 供應(yīng)商設(shè)備封裝:8-MSOP 包裝:帶卷 (TR)