21 FN6548.6 November 22, 2013 Hysteretic Comparator The input trans-conductance amps are under control of a hysteretic comparator oper" />
參數(shù)資料
型號: ISL28006FH100Z-T7A
廠商: Intersil
文件頁數(shù): 14/26頁
文件大?。?/td> 0K
描述: IC OPAMP CURRENT SENSE SOT23-5
應(yīng)用說明: ISL28005/06 Application Note
產(chǎn)品培訓模塊: Solutions for Test and Measurement Equipment
Solutions for Industrial Control Applications
標準包裝: 1
放大器類型: 電流檢測
電路數(shù): 1
轉(zhuǎn)換速率: 0.76 V/µs
-3db帶寬: 110kHz
電流 - 輸入偏壓: 4.7µA
電壓 - 輸入偏移: 1200µV
電流 - 電源: 50µA
電流 - 輸出 / 通道: 8.7mA
電壓 - 電源,單路/雙路(±): 2.7 V ~ 28 V
工作溫度: -40°C ~ 125°C
安裝類型: 表面貼裝
封裝/外殼: SC-74A,SOT-753
供應(yīng)商設(shè)備封裝: SOT-23-5
包裝: 標準包裝
其它名稱: ISL28006FH100Z-T7ADKR
ISL28006
21
FN6548.6
November 22, 2013
Hysteretic Comparator
The input trans-conductance amps are under control of a
hysteretic comparator operating from the incoming source
voltage on the RS+ pin (Figure 78). The comparator monitors the
voltage on RS+ and switches the sense amplifier from the
low-side gm amp to the high-side gm amplifier whenever the
input voltage at RS+ increases above the 1.35V threshold.
Conversely, a decreasing voltage on the RS+ pin, causes the
hysteric comparator to switch from the high-side gm amp to the
low-side gm amp as the voltage decreases below 1.35V. It is that
low-side sense gm amplifier that gives the ISL28006 the
proprietary ability to sense current all the way to 0V. Negative
voltages on the RS+ or RS- are beyond the sensing voltage range
of this amplifier.
Typical Application Circuit
Figure 80 shows the basic application circuit and optional
protection components for switched-load applications. For
applications where the load and the power source is permanently
connected, only an external sense resistor is needed. For
applications where fast transients are caused by hot plugging the
source or load, external protection components may be needed.
The external current limiting resistor (RP) in Figure 80 may be
required to limit the peak current through the internal ESD
diodes to <20mA. This condition can occur in applications that
experience high levels of in-rush current causing high peak
voltages that can damage the internal ESD diodes. An RP resistor
value of 100 will provide protection for a 2V transient with the
maximum of 20mA flowing through the input while adding only
an additional 13V (worse case over-temperature) of VOS. Refer
to Equation 3:
Switching applications can generate voltage spikes that can
overdrive the amplifier input and drive the output of the amplifier
into the rails, resulting in a long overload recover time.
Capacitors CM and CD filter the common mode and differential
voltage spikes.
Error Sources
There are 3 dominant error sources: gain error, input offset
voltage error and Kelvin voltage error (see Figure 79). The gain
error is dominated by the internal resistance matching
tolerances. The remaining errors appear as sense voltage errors
at the input to the amplifier. They are VOS of the amplifier and
Kelvin voltage errors. If the transient protection resistor is added,
an additional VOS error can result from the IxR voltage due to
input bias current. The limiting resistor should only be added to
the RS- input, due to the high-side gm amplifier (gmHI) sinking
several micro amps of current through the RS+ pin.
Layout Guidelines
The Kelvin Connected Sense Resistor
The source of Kelvin voltage errors is illustrated in Figure 79. The
resistance of 1/2 Oz copper is ~1m per square with a TC of
~3900ppm/°C (0.39%/°C). When you compare this unwanted
parasitic resistance with the total 1m to 10m resistance of
the sense resistor, it is easy to see why the sense connection
must be chosen very carefully. For example, consider a
maximum current of 20A through a 0.005 sense resistor,
generating a VSENSE = 0.1 and a full scale output voltage of 10V
(G = 100). Two side contacts of only 0.25 square per contact puts
the VSENSE input about 0.5 x 1m away from the resistor end
capacitor. If only 10A the 20A total current flows through the
kelvin path to the resistor, you get an error voltage of 10mV
(10A x 0.5sq x 0.001/sq. = 10mV) added to the 100mV sense
voltage for a sense voltage error of 10% (0.110V-0.1)/0.1V) x 100.
FIGURE 78. GAIN ACCURACY vs VRS+ = 0V TO 2V
VRS+ (V)
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0
0.2 0.4 0.6 0.81.0 1.21.4 1.61.8 2.0
ACCURACY
(%
)
(EQ. 3)
RP IRS-
×
()
100
Ω 130nA
×
()
13
μV
==
()
FIGURE 79. PC BOARD CURRENT SENSE KELVIN CONNECTION
PC Board
Non-uniform
Current Flow
Current Sense Resistor
1 to 10mO
Current In
Current Out
Kelvin V
S Contacts
Copper Trace
30mO/Sq.
PC Board
Non-uniform
Current Flow
Current Sense Resistor
1 to 10mO
Current In
Current Out
Kelvin V
S Contacts
Copper Trace
30mO/Sq.
CURRENT SENSE RESISTOR
1m TO 10m
1m /SQ
CURRENT OUT
CURRENT IN
NON-UNIFORM
CURRENT FLOW
PC BOARD
KELVIN VS CONTACTS
1/2 Oz COPPER TRACE
相關(guān)PDF資料
PDF描述
TSW-143-08-S-D-RA CONN HEADER 86POS .100 DL R/A AU
150CJ FUSE 150A 600V FAST ACT CLASS J
HMTSW-103-07-G-S-240 CONN HEADER 3POS .25 GLD
LT1169CS8 IC OPAMP JFET LONOISE DUAL 8SOIC
HMTSW-103-07-G-S-231 CONN HEADER 3POS .25 GLD
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ISL28006FH-20EVAL1Z 功能描述:放大器 IC 開發(fā)工具 ISL28006FH EVALRD 1 5LD GAIN OF 20 - RoHS:否 制造商:International Rectifier 產(chǎn)品:Demonstration Boards 類型:Power Amplifiers 工具用于評估:IR4302 工作電源電壓:13 V to 23 V
ISL28006FH20Z-T7 功能描述:放大器 IC 開發(fā)工具 ISL28006FH20Z MICRO PWR CUR SENSE AMP W/ RoHS:否 制造商:International Rectifier 產(chǎn)品:Demonstration Boards 類型:Power Amplifiers 工具用于評估:IR4302 工作電源電壓:13 V to 23 V
ISL28006FH20Z-T7A 功能描述:放大器 IC 開發(fā)工具 ISL28006FH20Z MICRO PWR CUR SENSE AMP W/ RoHS:否 制造商:International Rectifier 產(chǎn)品:Demonstration Boards 類型:Power Amplifiers 工具用于評估:IR4302 工作電源電壓:13 V to 23 V
ISL28006FH-50EVAL1Z 功能描述:放大器 IC 開發(fā)工具 ISL28006FH EVALRD 1 5LD GAIN OF 50 - RoHS:否 制造商:International Rectifier 產(chǎn)品:Demonstration Boards 類型:Power Amplifiers 工具用于評估:IR4302 工作電源電壓:13 V to 23 V
ISL28006FH50Z-T7 功能描述:放大器 IC 開發(fā)工具 ISL28006FH50Z MICRO PWR CUR SENSE AMP W/ RoHS:否 制造商:International Rectifier 產(chǎn)品:Demonstration Boards 類型:Power Amplifiers 工具用于評估:IR4302 工作電源電壓:13 V to 23 V