參數(shù)資料
型號(hào): ISL6557
廠商: Intersil Corporation
英文描述: PWM Controller with Wide Input Voltage Range 8-SOIC -20 to 85
中文描述: 多相PWM控制器為核心電壓調(diào)節(jié)
文件頁(yè)數(shù): 15/17頁(yè)
文件大?。?/td> 532K
代理商: ISL6557
15
In Equations 21, L is the per-channel filter inductance
divided by the number of active channels; C is the sum total
of all output capacitors; ESR is the equivalent-series
resistance of the bulk output-filter capacitance; and V
PP
is
the peak-to-peak sawtooth signal amplitude as described in
Figure 5 and
Electrical Specifications
.
Output Filter Design
The output inductors and the output capacitor bank together
form a low-pass filter responsible for smoothing the pulsating
voltage at the phase nodes. The output filter also must
provide the transient energy during the interval of time after
the beginning of the transient until the regulator can fully
respond. Because it has a low bandwidth compared to the
switching frequency, the output filter necessarily limits the
system transient response leaving the output capacitor bank
to supply or sink load current while the current in the output
inductors increases or decreases to meet the demand.
In high-speed converters, the output capacitor bank is
usually the most costly (and often the largest) part of the
circuit. Output filter design begins with minimizing the cost of
this part of the circuit. The critical load parameters in
choosing the output capacitors are the maximum size of the
load step,
I; the load-current slew rate, di/dt; and the
maximum allowable output-voltage deviation under transient
loading,
V
MAX
. Capacitors are characterized according to
their capacitance, ESR, and ESL (equivalent series
inductance).
At the beginning of the load transient, the output capacitors
supply all of the transient current. The output voltage will
initially deviate by an amount approximated by the voltage
drop across the ESL. As the load current increases, the
voltage drop across the ESR increases linearly until the load
current reaches its final value. The capacitors selected must
have sufficiently low ESL and ESR so that the total output-
voltage deviation is less than the allowable maximum.
Neglecting the contribution of inductor current and regulator
response, the output voltage initially deviates by an amount
The filter capacitor must have sufficiently low ESL and ESR
so that
V <
V
MAX
.
Most capacitor solutions rely on a mixture of high-frequency
capacitors with relatively low capacitance in combination
with bulk capacitors having high capacitance but limited
high-frequency performance. Minimizing the ESL of the
high-frequency capacitors allows them to support the output
voltage as the current increases. Minimizing the ESR of the
bulk capacitors allows them to supply the increased current
with less output voltage deviation.
The ESR of the bulk capacitors also creates the majority of
the output-voltage ripple. As the bulk capacitors sink and
source the inductor AC ripple current (see
Interleaving
and
Equation 2), a voltage develops across the bulk-capacitor
ESR equal to I
P
P
(ESR). Thus, once the output capacitors
are selected, the maximum allowable ripple voltage,
V
PP(MAX)
, determines the a lower limit on the inductance.
Since the capacitors are supplying a decreasing portion of
the load current while the regulator recovers from the
transient, the capacitor voltage becomes slightly depleted.
The output inductors must be capable of assuming the entire
load current before the output voltage decreases more than
V
MAX
. This places an upper limits on inductance.
Equation 24 gives the upper limit on L for the cases when
the trailing edge of the current transient causes a greater
output-voltage deviation than the leading edge. Equation 25
addresses the leading edge. Normally, the trailing edge
dictates the selection of L because duty cycles are usually
less than 50%. Nevertheless, both inequalities should be
evaluated, and L should be selected based on the lower of
the two results. In each equation, L is the per-channel
inductance, C is the total output capacitance, and N is the
number of active channels.
Switching Frequency
There are a number of variables to consider when choosing
the switching frequency. There are considerable effects on
the upper-MOSFET loss calculation and, to a lesser extent,
the lower-MOSFET loss calculation. These effects are
outlined in
MOSFETs
, and they establish the upper limit for
the switching frequency. The lower limit is established by the
requirement for fast transient response and small output-
voltage ripple as outlined in
Output Filter Design
. Choose
the lowest switching frequency that allows the regulator to
meet the transient-response requirements.
V
ESL
(
)
di
dt
----
ESR
(
)
I
+
(EQ. 22)
L
ESR
(
)
V
IN
-----------------------------------------------------------
NV
OUT
S
IN
PP MAX
V
OUT
)
(EQ. 23)
L
O
I
(
)
2
---------------------
V
MAX
I ESR
)
(EQ. 24)
L
-------------------------
V
MAX
I
I ESR
)
V
IN
V
O
(EQ. 25)
ISL6557
相關(guān)PDF資料
PDF描述
ISL6557CB PWM Controller with Wide Input Voltage Range 8-PDIP -20 to 85
ISL6558CRZA-T Multi-Purpose Precision Multi-Phase PWM Controller With Optional Active Voltage Positioning
ISL6558IB Multi-Purpose Precision Multi-Phase PWM Controller With Optional Active Voltage Positioning
ISL6558IB-T Multi-Purpose Precision Multi-Phase PWM Controller With Optional Active Voltage Positioning
ISL6558IBZ Multi-Purpose Precision Multi-Phase PWM Controller With Optional Active Voltage Positioning
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ISL6557 WAF 制造商:Intersil Corporation 功能描述:
ISL6557ACB 功能描述:IC REG CTRLR BUCK PWM VM 24-SOIC RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:4,000 系列:- PWM 型:電壓模式 輸出數(shù):1 頻率 - 最大:1.5MHz 占空比:66.7% 電源電壓:4.75 V ~ 5.25 V 降壓:是 升壓:無(wú) 回掃:無(wú) 反相:無(wú) 倍增器:無(wú) 除法器:無(wú) Cuk:無(wú) 隔離:無(wú) 工作溫度:-40°C ~ 85°C 封裝/外殼:40-VFQFN 裸露焊盤 包裝:帶卷 (TR)
ISL6557ACB-T 功能描述:IC REG CTRLR BUCK PWM VM 24-SOIC RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:4,000 系列:- PWM 型:電壓模式 輸出數(shù):1 頻率 - 最大:1.5MHz 占空比:66.7% 電源電壓:4.75 V ~ 5.25 V 降壓:是 升壓:無(wú) 回掃:無(wú) 反相:無(wú) 倍增器:無(wú) 除法器:無(wú) Cuk:無(wú) 隔離:無(wú) 工作溫度:-40°C ~ 85°C 封裝/外殼:40-VFQFN 裸露焊盤 包裝:帶卷 (TR)
ISL6557ACBZ 功能描述:IC REG CTRLR BUCK PWM VM 24-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:275kHz 占空比:50% 電源電壓:18 V ~ 110 V 降壓:無(wú) 升壓:無(wú) 回掃:無(wú) 反相:無(wú) 倍增器:無(wú) 除法器:無(wú) Cuk:無(wú) 隔離:是 工作溫度:-40°C ~ 85°C 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR)
ISL6557ACBZ-T 功能描述:IC REG CTRLR BUCK PWM VM 24-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:275kHz 占空比:50% 電源電壓:18 V ~ 110 V 降壓:無(wú) 升壓:無(wú) 回掃:無(wú) 反相:無(wú) 倍增器:無(wú) 除法器:無(wú) Cuk:無(wú) 隔離:是 工作溫度:-40°C ~ 85°C 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR)