參數(shù)資料
型號: KMPC8378CVRALG
廠商: Freescale Semiconductor
文件頁數(shù): 99/128頁
文件大?。?/td> 0K
描述: IC MPU POWERQUICC II 689-PBGA
標準包裝: 2
系列: MPC83xx
處理器類型: 32-位 MPC83xx PowerQUICC II Pro
速度: 667MHz
電壓: 1V
安裝類型: 表面貼裝
封裝/外殼: 689-BBGA 裸露焊盤
供應商設備封裝: 689-TEPBGA II(31x31)
包裝: 托盤
MPC8378E PowerQUICC II Pro Processor Hardware Specifications, Rev. 8
72
Freescale Semiconductor
15.5
Receiver Compliance Eye Diagrams
The Rx eye diagram in Figure 47 is specified using the passive compliance/test measurement load (see
Figure 48) in place of any real PCI Express Rx component. In general, the minimum receiver eye diagram
measured with the compliance/test measurement load (see Figure 48) is larger than the minimum receiver
eye diagram measured over a range of systems at the input receiver of any real PCI Express component.
The degraded eye diagram at the input receiver is due to traces internal to the package as well as silicon
parasitic characteristics that cause the real PCI Express component to vary in impedance from the
Unexpected Electrical Idle
Enter Detect Threshold
Integration Time
An unexpected electrical idle
(Vrx-diffp-p <
Vrx-idle-det-diffp-p) must be
recognized no longer than
Trx-idle-det-diff-entertime to
signal an unexpected idle
condition.
TRX-IDLE-DET-DIFF-
ENTERTIME
——
10
ms
Total Skew
Skew across all lanes on a link.
This includes variation in the
length of SKP ordered set (e.g.
COM and one to five SKP
Symbols) at the Rx as well as
any delay differences arising
from the interconnect itself.
LRX-SKEW
20
ns
Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 48 should be used
as the Rx device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 47). If the
clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must
be used as a reference for the eye diagram.
3. A TRx-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and
interconnect collected any 250 consecutive UIs. The TRx-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter
distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget
collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median
describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged
time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500
consecutive UI must be used as the reference for the eye diagram.
4. The receiver input impedance will result in a differential return loss greater than or equal to 10 dB with the D+ line biased to
300 mV and the D– line biased to –300 mV and a common mode return loss greater than or equal to 6 dB (no bias required)
over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The
reference impedance for return loss measurements for is 50
Ω to ground for both the D+ and D– line (that is, as measured
by a vector network analyzer with 50-
Ω probes, see Figure 48). Note that the series capacitors, CTx, is optional for the return
loss measurement.
5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM)
there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
6. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps
ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be
measured at 300 mV above the Rx ground.
7. It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and
simulated data.
Table 58. Differential Receiver (Rx) Input Specifications (continued)
Parameter
Comments
Symbol
Min
Typical
Max
Units
Note
相關PDF資料
PDF描述
KMPC8377VRALG IC MPU POWERQUICC II 689-PBGA
KMPC8377EVRALG IC MPU POWERQUICC II 689-PBGA
KMPC8377ECVRALG IC MPU POWERQUICC II 689-PBGA
KMPC8377CVRALG IC MPU POWERQUICC II 689-PBGA
KMPC8358VRAGDGA IC MPU POWERQUICC II 668-PBGA
相關代理商/技術參數(shù)
參數(shù)描述
KMPC8378ECVRALG 功能描述:微處理器 - MPU PBGA W/ ENCR RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324
KMPC8378EVRALG 功能描述:微處理器 - MPU PBGA W/ ENCR RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324
KMPC8378VRALG 功能描述:微處理器 - MPU PBGA W/O ENCR RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324
KMPC8379CVRALG 功能描述:微處理器 - MPU PBGA W/O ENCR RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324
KMPC8379ECVRALG 功能描述:微處理器 - MPU PBGA W/ ENCR RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324