參數(shù)資料
型號: LFXP10C-3FN256I
廠商: Lattice Semiconductor Corporation
文件頁數(shù): 260/397頁
文件大?。?/td> 0K
描述: IC FPGA 9.7KLUTS 188I/O 256-BGA
標準包裝: 90
系列: XP
邏輯元件/單元數(shù): 10000
RAM 位總計: 221184
輸入/輸出數(shù): 188
電源電壓: 1.71 V ~ 3.465 V
安裝類型: 表面貼裝
工作溫度: -40°C ~ 100°C
封裝/外殼: 256-BGA
供應商設(shè)備封裝: 256-FPBGA(17x17)
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁當前第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁第318頁第319頁第320頁第321頁第322頁第323頁第324頁第325頁第326頁第327頁第328頁第329頁第330頁第331頁第332頁第333頁第334頁第335頁第336頁第337頁第338頁第339頁第340頁第341頁第342頁第343頁第344頁第345頁第346頁第347頁第348頁第349頁第350頁第351頁第352頁第353頁第354頁第355頁第356頁第357頁第358頁第359頁第360頁第361頁第362頁第363頁第364頁第365頁第366頁第367頁第368頁第369頁第370頁第371頁第372頁第373頁第374頁第375頁第376頁第377頁第378頁第379頁第380頁第381頁第382頁第383頁第384頁第385頁第386頁第387頁第388頁第389頁第390頁第391頁第392頁第393頁第394頁第395頁第396頁第397頁
HDL Synthesis Coding Guidelines
Lattice Semiconductor
for Lattice Semiconductor FPGAs
15-5
Coding Styles for FSM
A finite state machine (FSM) is a hardware component that advances from the current state to the next state at the
clock edge. As mentioned in the Encoding Methodologies for State Machines section, the preferable scheme for
FPGA architectures is one-hot encoding. This section discusses some common issues encountered when con-
structing state machines, such as initialization and state coverage, and special case statements in Verilog.
General State Machine Description
Generally, there are two approaches to describe a state machine. One is to use one process/block to handle both
state transitions and state outputs. The other is to separate the state transition and the state outputs into two differ-
ent process/blocks. The latter approach is more straightforward because it separates the synchronous state regis-
ters from the decoding logic used in the computation of the next state and the outputs. This will make the code
easier to read and modify, and makes the documentation more efficient. If the outputs of the state machine are
combinatorial signals, the second approach is almost always necessary because it will prevent the accidental reg-
istering of the state machine outputs.
The following examples describe a simple state machine in VHDL and Verilog. In the VHDL example, a sequential
process is separated from the combinatorial process. In Verilog code, two always blocks are used to describe the
state machine in a similar way.
VHDL Example for State Machine
. . .
architecture lattice_fpga of dram_refresh is
type state_typ is (s0, s1, s2, s3, s4);
signal present_state, next_state : state_typ;
begin
-- process to update the present state
registers: process (clk, reset)
begin
if (reset='1') then
present_state <= s0;
elsif clk'event and clk='1' then
present_state <= next_state;
end if;
end process registers;
-- process to calculate the next state & output
transitions: process (present_state, refresh, cs)
begin
ras <= '0'; cas <= '0'; ready <= '0';
case present_state is
when s0 =>
ras <= '1'; cas <= '1'; ready <= '1';
if (refresh = '1') then next_state <= s3;
elsif (cs = '1') then next_state <= s1;
else next_state <= s0;
end if;
when s1 =>
ras <= '0'; cas <= '1'; ready <= '0';
next_state <= s2;
when s2 =>
ras <= '0'; cas <= '0'; ready <= '0';
if (cs = '0') then next_state <= s0;
else next_state <= s2;
end if;
when s3 =>
ras <= '1'; cas <= '0'; ready <= '0';
next_state <= s4;
when s4 =>
ras <= '0'; cas <= '0'; ready <= '0';
next_state <= s0;
when others =>
ras <= '0'; cas <= '0'; ready <= '0';
next_state <= s0;
end case;
end process transitions;
. . .
Verilog Example for State Machine
. . .
parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4;
reg [2:0] present_state, next_state;
reg ras, cas, ready;
// always block to update the present state
always @ (posedge clk or posedge reset)
begin
if (reset) present_state = s0;
else present_state = next_state;
end
// always block to calculate the next state & outputs
always @ (present_state or refresh or cs)
begin
next_state = s0;
ras = 1'bX; cas = 1'bX; ready = 1'bX;
case (present_state)
s0 : if (refresh) begin
next_state = s3;
ras = 1'b1; cas = 1'b0; ready = 1'b0;
end
else if (cs) begin
next_state = s1; ras = 1'b0; cas = 1'b1; ready = 1'b0;
end
else begin
next_state = s0; ras = 1'b1; cas = 1'b1; ready = 1'b1;
end
s1 : begin
next_state = s2; ras = 1'b0; cas = 1'b0; ready = 1'b0;
end
s2 : if (~cs) begin
next_state = s0; ras = 1'b1; cas = 1'b1; ready = 1'b1;
end
else begin
next_state = s2; ras = 1'b0; cas = 1'b0; ready = 1'b0;
end
s3 : begin
next_state = s4; ras = 1'b1; cas = 1'b0; ready = 1'b0;
end
s4 : begin
next_state = s0; ras = 1'b0; cas = 1'b0; ready = 1'b0;
end
endcase
end
. . .
相關(guān)PDF資料
PDF描述
RMA43DTMD CONN EDGECARD 86POS R/A .125 SLD
RSA43DTBN CONN EDGECARD 86POS R/A .125 SLD
LT1020CSW IC REG LDO ADJ 125MA 16-SOIC
LFXP10C-3FN388I IC FPGA 9.7KLUTS 244I/O 388-BGA
RMA43DTBN CONN EDGECARD 86POS R/A .125 SLD
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LFXP10C-3FN388C 功能描述:FPGA - 現(xiàn)場可編程門陣列 9.7K LUTS 244 I/O RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP10C-3FN388I 功能描述:FPGA - 現(xiàn)場可編程門陣列 9.7K LUTs 244 IO 1.8 /2.5/3.3V -3 Spd I RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP10C-4F256C 功能描述:FPGA - 現(xiàn)場可編程門陣列 9.7K LUTs 188 I/O 1.8/2.5/3.3V -4 Spd RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP10C-4F256CES 功能描述:FPGA - 現(xiàn)場可編程門陣列 RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP10C-4F256I 功能描述:FPGA - 現(xiàn)場可編程門陣列 9.7K LUTs 188 IO 1.8 /2.5/3.3V -4 Spd I RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256