參數(shù)資料
型號: LFXP3E-3TN100C
廠商: Lattice Semiconductor Corporation
文件頁數(shù): 258/397頁
文件大小: 0K
描述: IC FPGA 3.1KLUTS 62I/O 100-TQFP
標(biāo)準(zhǔn)包裝: 90
系列: XP
邏輯元件/單元數(shù): 3000
RAM 位總計: 55296
輸入/輸出數(shù): 62
電源電壓: 1.14 V ~ 1.26 V
安裝類型: 表面貼裝
工作溫度: 0°C ~ 85°C
封裝/外殼: 100-LQFP
供應(yīng)商設(shè)備封裝: 100-TQFP(14x14)
其它名稱: 220-1797
LFXP3E-3TN100C-ND
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁當(dāng)前第258頁第259頁第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁第318頁第319頁第320頁第321頁第322頁第323頁第324頁第325頁第326頁第327頁第328頁第329頁第330頁第331頁第332頁第333頁第334頁第335頁第336頁第337頁第338頁第339頁第340頁第341頁第342頁第343頁第344頁第345頁第346頁第347頁第348頁第349頁第350頁第351頁第352頁第353頁第354頁第355頁第356頁第357頁第358頁第359頁第360頁第361頁第362頁第363頁第364頁第365頁第366頁第367頁第368頁第369頁第370頁第371頁第372頁第373頁第374頁第375頁第376頁第377頁第378頁第379頁第380頁第381頁第382頁第383頁第384頁第385頁第386頁第387頁第388頁第389頁第390頁第391頁第392頁第393頁第394頁第395頁第396頁第397頁
HDL Synthesis Coding Guidelines
Lattice Semiconductor
for Lattice Semiconductor FPGAs
15-3
two portions of a block, one that needs to be optimized for area and a second that needs to be optimized for speed,
they should be separated into two blocks. By doing this, different optimization strategies for each module can be
applied without being limited by one another.
Keep Logic with the Same Relaxation Constraints in the Same Block
When a portion of the design does not require high performance, this portion can be applied with relaxed timing
constraints such as “multicycle” to achieve high utilization of device area. Relaxation constraints help to reduce
overall run time. They can also help to efficiently save resources, which can be used on critical paths. Figure 15-3
shows an example of grouping logic with the same relaxation constraint in one block.
Figure 15-3. Logic with the Same Relaxation Constraint
Keep Instantiated Code in Separate Blocks
It is recommended that the RAM block in the hierarchy be left in a separate block (Figure 15-4). This allows for easy
swapping between the RAM behavioral code for simulation, and the code for technology instantiation. In addition,
this coding style facilitates the integration of the ispLEVER IPexpress tool into the synthesis process.
Figure 15-4. Separate RAM Block
Keep the Number FPGA Gates at 30 to 80 PFUs Per Block
This range varies based on the computer configuration, time required to complete each optimization run, and the
targeted FPGA routing resources. Although a smaller block methodology allows more control, it may not produce
the most efficient design since it does not provide the synthesis tool enough logic to apply “Resource Sharing”
algorithms. On the other hand, having a large number of gates per block gives the synthesis tool too much to work
on and causes changes that affect more logic than necessary in an incremental or multi-block design flow.
State Encoding Methodologies for State Machines
There are several ways to encode a state machine, including binary encoding, gray-code encoding and one-hot
encoding. State machines with binary or gray-code encoded states have minimal numbers of flip-flops and wide
combinatorial functions, which are typically favored for CPLD architectures. However, most FPGAs have many flip-
flops and relatively narrow combinatorial function generators. Binary or gray-code encoding schemes can result in
inefficient implementation in terms of speed and density for FPGAs. On the other hand, one-hot encoded state
machine represents each state with one flip-flop. As a result, it decreases the width of combinatorial logic, which
matches well with FPGA architectures. For large and complex state machines, one-hot encoding usually is the
preferable method for FPGA architectures. For small state machines, binary encoding or gray-code encoding may
be more efficient.
There are many ways to ensure the state machine encoding scheme for a design. One can hard code the states in
the source code by specifying a numerical value for each state. This approach ensures the correct encoding of the
state machine but is more restrictive in the coding style. The enumerated coding style leaves the flexibility of state
machine encoding to the synthesis tools. Most synthesis tools allow users to define encoding styles either through
A
FF1
B
FF2
FF1
A
FF2
State Machine
Counter
Controller
RAM
Register File
Top
相關(guān)PDF資料
PDF描述
ACC35DRXN-S734 CONN EDGECARD 70POS DIP .100 SLD
ACC35DRXH-S734 CONN EDGECARD 70POS DIP .100 SLD
LFXP3C-3T100C IC FPGA 3.1KLUTS 62I/O 100-TQFP
KA78M06RTF IC REG LDO 6V .5A DPAK
ACC35DRES-S93 CONN EDGECARD 70POS .100 EYELET
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LFXP3E-3TN100I 功能描述:FPGA - 現(xiàn)場可編程門陣列 3.1K LUTs 62 IO 1.2V -3 Spd I RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP3E-3TN144C 功能描述:FPGA - 現(xiàn)場可編程門陣列 3.1K LUTs 100 IO 1.2 V -3 Spd RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP3E-3TN144I 功能描述:FPGA - 現(xiàn)場可編程門陣列 3.1K LUTs 100 IO 1.2 V -3 Spd I RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP3E-4Q208C 功能描述:FPGA - 現(xiàn)場可編程門陣列 3.1K LUTs 136 IO 1.2 V -4 Spd RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP3E-4Q208I 功能描述:FPGA - 現(xiàn)場可編程門陣列 3.1K LUTs 136 IO 1.2 V -4 Spd I RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內(nèi)嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:FBGA-256