Application Information (Continued)
current rating rather than its capacitance or voltage ratings,
although the capacitance value and voltage rating are di-
rectly related to the RMS current rating.
The RMS current rating of a capacitor could be viewed as a
capacitor’s power rating. The RMS current flowing through
the capacitors internal ESR produces power which causes
the internal temperature of the capacitor to rise. The RMS
current rating of a capacitor is determined by the amount of
current required to raise the internal temperature approxi-
mately 10C above an ambient temperature of 105C. The
ability of the capacitor to dissipate this heat to the surround-
ing air will determine the amount of current the capacitor can
safely sustain. Capacitors that are physically large and have
a large surface area will typically have higher RMS current
ratings. For a given capacitor value, a higher voltage elec-
trolytic capacitor will be physically larger than a lower voltage
capacitor, and thus be able to dissipate more heat to the
surrounding air, and therefore will have a higher RMS cur-
rent rating.
The consequences of operating an electrolytic capacitor
above the RMS current rating is a shortened operating life.
The higher temperature speeds up the evaporation of the
capacitor’s electrolyte, resulting in eventual failure.
Selecting an input capacitor requires consulting the manu-
facturers data sheet for maximum allowable RMS ripple
current. For a maximum ambient temperature of 40C, a
general guideline would be to select a capacitor with a ripple
current rating of approximately 50% of the DC load current.
For ambient temperatures up to 70C, a current rating of
75% of the DC load current would be a good choice for a
conservative design. The capacitor voltage rating must be at
least 1.25 times greater than the maximum input voltage,
and often a much higher voltage capacitor is needed to
satisfy the RMS current requirements.
A graph shown in
Figure 16 shows the relationship between
an electrolytic capacitor value, its voltage rating, and the
RMS current it is rated for. These curves were obtained from
the Nichicon “PL” series of low ESR, high reliability electro-
lytic capacitors designed for switching regulator applications.
Other capacitor manufacturers offer similar types of capaci-
tors, but always check the capacitor data sheet.
“Standard” electrolytic capacitors typically have much higher
ESR numbers, lower RMS current ratings and typically have
a shorter operating lifetime.
Because of their small size and excellent performance, sur-
face mount solid tantalum capacitors are often used for input
bypassing, but several precautions must be observed. A
small percentage of solid tantalum capacitors can short if the
inrush current rating is exceeded. This can happen at turn on
when the input voltage is suddenly applied, and of course,
higher input voltages produce higher inrush currents. Sev-
eral capacitor manufacturers do a 100% surge current test-
ing on their products to minimize this potential problem. If
high turn on currents are expected, it may be necessary to
limit this current by adding either some resistance or induc-
tance before the tantalum capacitor, or select a higher volt-
age capacitor. As with aluminum electrolytic capacitors, the
RMS ripple current rating must be sized to the load current.
OUTPUT CAPACITOR
C
OUT — An output capacitor is required to filter the output
and provide regulator loop stability. Low impedance or low
ESR Electrolytic or solid tantalum capacitors designed for
switching regulator applications must be used. When select-
ing an output capacitor, the important capacitor parameters
are; the 100 kHz Equivalent Series Resistance (ESR), the
RMS ripple current rating, voltage rating, and capacitance
value. For the output capacitor, the ESR value is the most
important parameter.
The output capacitor requires an ESR value that has an
upper and lower limit. For low output ripple voltage, a low
ESR value is needed. This value is determined by the maxi-
mum allowable output ripple voltage, typically 1% to 2% of
the output voltage. But if the selected capacitor’s ESR is
extremely low, there is a possibility of an unstable feedback
loop, resulting in an oscillation at the output. Using the
capacitors listed in the tables, or similar types, will provide
design solutions under all conditions.
If very low output ripple voltage (less than 15 mV) is re-
quired, refer to the section on Output Voltage Ripple and
Transients for a post ripple filter.
An aluminum electrolytic capacitor’s ESR value is related to
the capacitance value and its voltage rating. In most cases,
Higher voltage electrolytic capacitors have lower ESR values
(see
Figure 17). Often, capacitors with much higher voltage
ratings may be needed to provide the low ESR values re-
quired for low output ripple voltage.
The output capacitor for many different switcher designs
often can be satisfied with only three or four different capaci-
tor values and several different voltage ratings. See the
DS012440-28
FIGURE 16. RMS Current Ratings for Low
ESR Electrolytic Capacitors (Typical)
DS012440-29
FIGURE 17. Capacitor ESR vs Capacitor Voltage Rating
(Typical Low ESR Electrolytic Capacitor)
LM2597/LM2597HV
www.national.com
23