參數(shù)資料
型號(hào): LM4852LQ/NOPB
廠商: NATIONAL SEMICONDUCTOR CORP
元件分類: 音頻/視頻放大
英文描述: 1.5 W, 3 CHANNEL, AUDIO AMPLIFIER, QCC24
封裝: LLP-24
文件頁數(shù): 8/21頁
文件大小: 860K
代理商: LM4852LQ/NOPB
Application Information (Continued)
150C to prevent activating the LM4852’s thermal shutdown
protection. Further detailed and specific information con-
cerning PCB layout and fabrication and mounting an LD
(LLP) is found in National Semiconductor’s AN1187.
PCB LAYOUT AND SUPPLY REGULATION
CONSIDERATIONS FOR DRIVING 3
AND 4 LOADS
Power dissipated by a load is a function of the voltage swing
across the load and the load’s impedance. As load imped-
ance decreases, load dissipation becomes increasingly de-
pendent on the interconnect (PCB trace and wire) resistance
between the amplifier output pins and the load’s connec-
tions. Residual trace resistance causes a voltage drop,
which results in power dissipated in the trace and not in the
load as desired. For example, 0.1
trace resistance reduces
the output power dissipated by a 4
load from 1.7W to 1.6W.
The problem of decreased load dissipation is exacerbated
as load impedance decreases. Therefore, to maintain the
highest load dissipation and widest output voltage swing,
PCB traces that connect the output pins to a load must be as
wide as possible.
Poor power supply regulation adversely affects maximum
output power. A poorly regulated supply’s output voltage
decreases with increasing load current. Reduced supply
voltage causes decreased headroom, output signal clipping,
and reduced output power. Even with tightly regulated sup-
plies, trace resistance creates the same effects as poor
supply regulation. Therefore, making the power supply
traces as wide as possible helps maintain full output voltage
swing.
BRIDGE CONFIGURATION EXPLANATION
As shown in Figure 1, the LM4852 consists of three pairs of
output amplifier blocks (A4-A6). Amplifier block A6 consists
of a bridged-tied amplifier pair that drives SPKROUT. The
LM4852 drives a load, such as a speaker, connected be-
tween outputs, SPKROUT+ and SPKROUT-. In the amplifier
block A6, the output of the amplifier that drives SPKROUT-
serves as the input to the unity gain inverting amplifier that
drives SPKROUT+.
This results in both amplifiers producing signals identical in
magnitude, but 180 out of phase. Taking advantage of this
phase difference, a load is placed between SPKROUT- and
SPKROUT+ and driven differentially (commonly referred to
as ’bridge mode’). This results in a differential or BTL gain of:
A
VD = 2(Rf /Ri)=2
(1)
Bridge mode amplifiers are different from single-ended am-
plifiers that drive loads connected between a single amplifi-
er’s output and ground. For a given supply voltage, bridge
mode has a distinct advantage over the single-ended con-
figuration: its differential output doubles the voltage swing
across the load. Theoretically, this produces four times the
output power when compared to a single-ended amplifier
under the same conditions. This increase in attainable output
power assumes that the amplifier is not current limited and
that the output signal is not clipped.
Another advantage of the differential bridge output is no net
DC voltage across the load. This is accomplished by biasing
SPKROUT- and SPKROUT+ outputs at half-supply. This
eliminates the coupling capacitor that single supply, single-
ended amplifiers require. Eliminating an output coupling ca-
pacitor in a typical single-ended configuration forces a
single-supply amplifier’s half-supply bias voltage across the
load. This increases internal IC power dissipation and may
permanently damage loads such as speakers.
POWER DISSIPATION
Power dissipation is a major concern when designing a
successful single-ended or bridged amplifier.
A direct consequence of the increased power delivered to
the load by a bridge amplifier is higher internal power dissi-
pation. The LM4852 has a pair of bridged-tied amplifiers
driving a handsfree speaker, SPKROUT. The maximum in-
ternal power dissipation operating in the bridge mode is
twice that of a single-ended amplifier. From Equation (2),
assuming a 5V power supply and an 8
load, the maximum
SPKROUT power dissipation is 634mW.
P
DMAX-SPKROUT = 4(VDD)
2 / (2
π2 R
L): Bridge Mode
(2)
The LM4852 also has a pair of single-ended amplifiers driv-
ing stereo headphones, ROUT and LOUT. The maximum
internal power dissipation for ROUT and LOUT is given by
equation (3) and (4). From Equations (3) and (4), assuming
a 5V power supply and a 32
load, the maximum power
dissipation for LOUT and ROUT is 40mW, or 80mW total.
P
DMAX-LOUT =(VDD)
2 /(2
π2 R
L): Single-ended Mode (3)
P
DMAX-ROUT =(VDD)
2 /(2
π2 R
L): Single-ended Mode (4)
The maximum internal power dissipation of the LM4852
occurs when all 3 amplifiers pairs are simultaneously on; and
is given by Equation (5).
P
DMAX-TOTAL =
P
DMAX-SPKROUT +PDMAX-LOUT +PDMAX-ROUT
(5)
The maximum power dissipation point given by Equation (5)
must not exceed the power dissipation given by Equation
(6):
P
DMAX’= (TJMAX -TA)/
θ
JA
(6)
The LM4852’s T
JMAX = 150C. In the ITL package, the
LM4852’s
θ
JA is 48C/W. In the LD package soldered to a
DAP pad that expands to a copper area of 2.5in
2 on a PCB,
the LM4852’s
θ
JA is 42C/W. At any given ambient tempera-
ture T
A, use Equation (6) to find the maximum internal power
dissipation supported by the IC packaging. Rearranging
Equation (6) and substituting P
DMAX-TOTAL for PDMAX’ results
in Equation (7). This equation gives the maximum ambient
temperature that still allows maximum stereo power dissipa-
tion without violating the LM4852’s maximum junction tem-
perature.
T
A =TJMAX -PDMAX-TOTAL
θ
JA
(7)
For a typical application with a 5V power supply and an 8
load, the maximum ambient temperature that allows maxi-
LM4852
www.national.com
16
相關(guān)PDF資料
PDF描述
LM4852ITL/NOPB 1.1 W, 3 CHANNEL, AUDIO AMPLIFIER, PBGA18
LM4854MT/NOPB 0.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO14
LM4854MTX/NOPB 0.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO14
LM4854LD/NOPB 0.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO14
LM4854LDX/NOPB 0.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO14
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LM4853 制造商:NSC 制造商全稱:National Semiconductor 功能描述:Mono 1.5 W / Stereo 300mW Power Amplifier
LM4853LD 功能描述:音頻放大器 RoHS:否 制造商:STMicroelectronics 產(chǎn)品:General Purpose Audio Amplifiers 輸出類型:Digital 輸出功率: THD + 噪聲: 工作電源電壓:3.3 V 電源電流: 最大功率耗散: 最大工作溫度: 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TQFP-64 封裝:Reel
LM4853LD/NOPB 功能描述:音頻放大器 RoHS:否 制造商:STMicroelectronics 產(chǎn)品:General Purpose Audio Amplifiers 輸出類型:Digital 輸出功率: THD + 噪聲: 工作電源電壓:3.3 V 電源電流: 最大功率耗散: 最大工作溫度: 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TQFP-64 封裝:Reel
LM4853MM 功能描述:音頻放大器 RoHS:否 制造商:STMicroelectronics 產(chǎn)品:General Purpose Audio Amplifiers 輸出類型:Digital 輸出功率: THD + 噪聲: 工作電源電壓:3.3 V 電源電流: 最大功率耗散: 最大工作溫度: 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TQFP-64 封裝:Reel
LM4853MM/NOPB 功能描述:音頻放大器 RoHS:否 制造商:STMicroelectronics 產(chǎn)品:General Purpose Audio Amplifiers 輸出類型:Digital 輸出功率: THD + 噪聲: 工作電源電壓:3.3 V 電源電流: 最大功率耗散: 最大工作溫度: 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:TQFP-64 封裝:Reel