參數(shù)資料
型號: LTC1150CN8#PBF
廠商: Linear Technology
文件頁數(shù): 16/16頁
文件大小: 0K
描述: IC OPAMP CHOP-STBL W/CAPS 8-DIP
標準包裝: 50
放大器類型: 斷路器(零漂移)
電路數(shù): 1
轉換速率: 3 V/µs
增益帶寬積: 2.5MHz
電流 - 輸入偏壓: 10pA
電壓 - 輸入偏移: 0.5µV
電流 - 電源: 800µA
電壓 - 電源,單路/雙路(±): 4.75 V ~ 32 V,±2.38 V ~ 16 V
工作溫度: 0°C ~ 70°C
安裝類型: 通孔
封裝/外殼: 8-DIP(0.300",7.62mm)
供應商設備封裝: 8-PDIP
包裝: 管件
產(chǎn)品目錄頁面: 1321 (CN2011-ZH PDF)
LTC1150
9
1150fb
ACHIEVING PICOAMPERE/MICROVOLT
PERFORMANCE
Picoamperes
In order to realize the picoampere level of accuracy of the
LTC1150, proper care must be exercised. Leakage cur-
rents in circuitry external to the amplifier can significantly
degrade performance. High quality insulation should be
used (e.g., Teflon, Kel-F); cleaning of all insulating sur-
faces to remove fluxes and other residues will probably
be necessary–particularly for high temperature perfor-
mance. Surface coating may be necessary to provide a
moisture barrier in high humidity environments.
Board leakage can be minimized by encircling the input
connections with a guard ring operated at a potential
close to that of the inputs: in inverting configurations the
guard ring should be tied to ground; in noninverting
connections to the inverting input. Guarding both sides
of the printed circuit board is required. Bulk leakage
reduction depends on the guard ring width.
Microvolts
Thermocouple effects must be considered if the LTC1150’s
ultralow drift is to be fully utilized. Any connection of
dissimilar metals forms a thermoelectric junction produc-
ing an electric potential which varies with temperature
(Seebeck effect). As temperature sensors, thermocouples
exploit this phenomenon to produce useful information.
In low drift amplifier circuits the effect is a primary source
of error.
Connectors, switches, relay contacts, sockets, resistors,
solder, and even copper wire are all candidates for
thermal EMF generation. Junctions of copper wire from
different manufacturers can generate thermal EMFs of
200nV/°C—four times the maximum drift specification
of the LTC1150. The copper/kovar junction, formed when
wire or printed circuit traces contact a package lead, has
a thermal EMF of approximately 35V/°C—700 times the
maximum drift specification of the LTC1150.
Minimizing thermal EMF-induced errors is possible if
judicious attention is given to circuit board layout and
component selection. It is good practice to minimize the
number of junctions in the amplifier’s input signal path.
Avoid connectors, sockets, switches, and relays where
possible. In instances where this is not possible, attempt
to balance the number and type of junctions so that
differential cancellation occurs. Doing this may involve
deliberately introducing junctions to offset unavoidable
junctions.
Figure 1 is an example of the introduction of an unneces-
sary resistor to promote differential thermal balance.
Maintaining compensating junctions in close physical
proximity will keep them at the same temperature and
reduce thermal EMF errors.
LTC1150 AI01
OUTPUT
NOMINALLY UNNECESSARY
RESISTOR USED TO
THERMALLY BALANCE
OTHER INPUT RESISTOR
RESISTOR LEAD, SOLDER,
COPPER TRACE JUNCTION
LEAD WIRE/SOLDER
COPPER TRACE JUNCTION
LTC1150
+
Figure 1. Extra Resistors Cancel Thermal EMF
When connectors, switches, relays and/or sockets are
necessary, they should be selected for low thermal EMF
activity. The same techniques of thermally-balancing and
coupling the matching junctions are effective in reducing
the thermal EMF errors of these components.
Resistors are another source of thermal EMF errors.
Table 1 shows the thermal EMF generated for different
resistors. The temperature gradient across the resistor is
important, not the ambient temperature. There are two
junctions formed at each end of the resistor and if these
junctions are at the same temperature, their thermal EMFs
will cancel each other. The thermal EMF numbers are
approximate and vary with resistor value. High values give
higher thermal EMF.
APPLICATIO S I FOR ATIO
WU
UU
相關PDF資料
PDF描述
PEC10DBAN CONN HEADER .100 DUAL R/A 20POS
LT1124CS8#PBF IC OP-AMP LOW NOISE DUAL 8-SOIC
PBC05DFBN CONN HEADER .100 DUAL STR 10POS
LT6201CS8#PBF IC OPAMP R-R IN/OUT DUAL 8SOIC
PBC03DACN CONN HEADER .100 DUAL STR 6POS
相關代理商/技術參數(shù)
參數(shù)描述
LTC1150CS8 功能描述:IC OPAMP CHOP-STBL W/CAPS 8SOIC RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:50 系列:- 放大器類型:J-FET 電路數(shù):2 輸出類型:- 轉換速率:13 V/µs 增益帶寬積:3MHz -3db帶寬:- 電流 - 輸入偏壓:65pA 電壓 - 輸入偏移:3000µV 電流 - 電源:1.4mA 電流 - 輸出 / 通道:- 電壓 - 電源,單路/雙路(±):7 V ~ 36 V,±3.5 V ~ 18 V 工作溫度:-40°C ~ 85°C 安裝類型:通孔 封裝/外殼:8-DIP(0.300",7.62mm) 供應商設備封裝:8-PDIP 包裝:管件
LTC1150CS8#PBF 功能描述:IC OPAMP CHOP-STBL W/CAPS 8SOIC RoHS:是 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:2,500 系列:- 放大器類型:通用 電路數(shù):4 輸出類型:- 轉換速率:0.6 V/µs 增益帶寬積:1MHz -3db帶寬:- 電流 - 輸入偏壓:45nA 電壓 - 輸入偏移:2000µV 電流 - 電源:1.4mA 電流 - 輸出 / 通道:40mA 電壓 - 電源,單路/雙路(±):3 V ~ 32 V,±1.5 V ~ 16 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:14-TSSOP(0.173",4.40mm 寬) 供應商設備封裝:14-TSSOP 包裝:帶卷 (TR) 其它名稱:LM324ADTBR2G-NDLM324ADTBR2GOSTR
LTC1150CS8#PBF 制造商:Linear Technology 功能描述:IC OP AMP CHOP-STABLE 8SOIC 制造商:Linear Technology 功能描述:IC, OP AMP, CHOP-STABLE, 8SOIC
LTC1150CS8#TR 功能描述:IC OPAMP ZERO DRIFT CAPS 8SOIC RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:50 系列:- 放大器類型:J-FET 電路數(shù):2 輸出類型:- 轉換速率:13 V/µs 增益帶寬積:3MHz -3db帶寬:- 電流 - 輸入偏壓:65pA 電壓 - 輸入偏移:3000µV 電流 - 電源:1.4mA 電流 - 輸出 / 通道:- 電壓 - 電源,單路/雙路(±):7 V ~ 36 V,±3.5 V ~ 18 V 工作溫度:-40°C ~ 85°C 安裝類型:通孔 封裝/外殼:8-DIP(0.300",7.62mm) 供應商設備封裝:8-PDIP 包裝:管件
LTC1150CS8#TRPBF 功能描述:IC OPAMP CHOP-STBL W/CAPS 8SOIC RoHS:是 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標準包裝:50 系列:- 放大器類型:J-FET 電路數(shù):2 輸出類型:- 轉換速率:13 V/µs 增益帶寬積:3MHz -3db帶寬:- 電流 - 輸入偏壓:65pA 電壓 - 輸入偏移:3000µV 電流 - 電源:1.4mA 電流 - 輸出 / 通道:- 電壓 - 電源,單路/雙路(±):7 V ~ 36 V,±3.5 V ~ 18 V 工作溫度:-40°C ~ 85°C 安裝類型:通孔 封裝/外殼:8-DIP(0.300",7.62mm) 供應商設備封裝:8-PDIP 包裝:管件