參數(shù)資料
型號: LTC1702C
廠商: Linear Technology Corporation
元件分類: 通用總線功能
英文描述: Synchronous 8-Bit Up/Down Binary Counters 24-SOIC 0 to 70
中文描述: 雙550kHz的同步二相開關(guān)穩(wěn)壓器控制器
文件頁數(shù): 26/36頁
文件大?。?/td> 350K
代理商: LTC1702C
26
LTC1702
to an intermediate supply voltage, often 5V. The LTC1702
then converts the intermediate voltage to the low voltage,
high current supplies required by the system. Compared
to a 1-step converter that converts a high input voltage
directly to a very low output voltage, the 2-step converter
exhibits superior transient response, smaller component
size and equivalent efficiency. Thermal management and
layout complexity are also improved with a 2-step
approach.
A typical notebook computer supply might use a 4-cell
Li-Ion battery pack as an input supply with a 15V nominal
terminal voltage. The logic circuits require 5V/3A and 3.3V/
5A to power system board logic, and 2.5V/0.5A, 1.8V/2A
and 1.5V/10A to power the CPU. A typical 2-step conver-
sion system would use a step-down switcher (perhaps an
LTC1628 or two LTC1625s) to convert 15V to 5V and
another to convert 15V to 3.3V (Figure 14). One channel of
the LTC1702 would generate the 1.5V supply using the
3.3V supply as the input and the other channel would gen-
erate 1.8V using the 5V supply as the input. The corre-
sponding 1-step system would use four similar step-down
switchers, each using 15V as the input supply and gener-
ating one of the four output voltages. Since the 2.5V sup-
ply represents a small fraction of the total output power,
either system can generate it from the 3.3V output using
an LDO linear regulator, without the 75% linear efficiency
making much of an impact on total system efficiency.
APPLICATIO
S I
FOR
ATIO
U
W
U
U
Clearly, the 5V and 3.3V sections of the two schemes are
equivalent. The 2-step system draws additional power
from the 5V and 3.3V outputs, but the regulation tech-
niques and trade-offs at these outputs are similar. The
difference lies in the way the 1.8V and 1.5V supplies are
generated. For example, the 2-step system converts 3.3V
to 1.5V with a 45% duty cycle. During the QT on-time, the
voltage across the inductor is 1.8V and during the QB
on-time, the voltage is 1.5V, giving roughly symmetrical
transient response to positive and negative load steps. The
1.8V maximum voltage across the inductor allows the use
of a small 0.47
μ
H inductor while keeping ripple current
under 4A (40% of the 10A maximum load). By contrast,
the 1-step converter is converting 15V to 1.5V, requiring
just a 10% duty cycle. Inductor voltages are now 13.5V
when QT is on and 1.5V when QB is on, giving vastly
different di/dt values and correspondingly skewed tran-
sient response with positive and negative current steps.
The narrow 10% duty cycle usually requires a lower
switching frequency, which in turn requires a higher value
inductor and larger output capacitor. Parasitic losses due
to the large voltage swing at the source of QT cost
efficiency, eliminating any advantage the 1-step conver-
sion might have had.
Note that power dissipation in the LTC1702 portion of a
2-step circuit is lower than it would be in a typical 1-step
converter, even in cases where the 1-step converter has
higher total efficiency than the 2-step system. In a typical
microprocessor core supply regulator, for example, the
regulator is usually located right next to the CPU. In a
1-step design, all of the power dissipated by the core
regulator is right there next to the hot CPU, aggravating
thermal management. In a 2-step LTC1702 design, a
significant percentage of the power lost in the core regu-
lation system happens in the 5V or 3.3V supply, which is
usually away from the CPU. The power lost to heat in the
LTC1702 section of the system is relatively low, minimiz-
ing the heat near the CPU.
Figure 14. 2-Step Conversion Block Diagram
V
15V
LTC1628*
*OR TWO LTC1625s
LTC1702
LDO
5V/3A
1.8V/2A
1.5V/10A
3.3V/5A
2.5V/0.5A
1702 F14
相關(guān)PDF資料
PDF描述
LTC1702I Synchronous 8-Bit Up/Down Binary Counters 24-SOIC 0 to 70
LTC1702IGN Dual 550kHz Synchronous 2-Phase Switching Regulator Controller
LTC1706-85 VID Voltage Programmer for Intel VRM 8.5
LTC1706EMS-85 VID Voltage Programmer for Intel VRM 8.5
LTC1706CS8-19 VID Voltage Programmer
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1702CGN 功能描述:IC REG CTRLR BUCK PWM VM 24-SSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:PolyPhase® 標準包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX
LTC1702CGN#PBF 功能描述:IC REG CTRLR BUCK PWM VM 24-SSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:PolyPhase® 標準包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX
LTC1702CGN#TR 功能描述:IC REG CTRLR BUCK PWM VM 24-SSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:PolyPhase® 標準包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX
LTC1702CGN#TRPBF 功能描述:IC REG CTRLR BUCK PWM VM 24-SSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:PolyPhase® 標準包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX
LTC1702IGN 功能描述:IC REG CTRLR BUCK PWM VM 24-SSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:PolyPhase® 標準包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX