參數(shù)資料
型號(hào): LTC1733EMSE
廠商: LINEAR TECHNOLOGY CORP
元件分類(lèi): 電源管理
英文描述: Monolithic Linear Lithium-Ion Battery Charger with Thermal Regulation
中文描述: 2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10
封裝: PLASTIC, MSOP-10
文件頁(yè)數(shù): 12/16頁(yè)
文件大?。?/td> 169K
代理商: LTC1733EMSE
LTC1733
12
sn1733 1733fs
If a thermistor with a tolerance less than
±
10% is used, the
trip point errors begin to depend on errors other than
thermistor tolerance including the input offset voltage of
the internal comparators of the LTC1733 and the effects of
internal voltage drops due to high charging currents.
Constant-Current/Constant-Voltage/
Constant-Temperature
The LTC1733 uses a unique architecture to charge a
battery in a constant-current, constant-voltage, constant-
temperature fashion. Figure 1 shows a simplified block
diagram of the LTC1733. Three of the amplifier feedback
loops shown control the constant-current, CA, constant-
voltage, VA, and constant-temperature, TA modes. A
fourth amplifier feedback loop, MA, is used to increase the
output impedance of the current source pair, M1 and M2
(note that M1 is the internal P-channel power MOSFET). It
ensures that the drain current of M1 is exactly 1000 times
greater than the drain current of M2.
Amplifiers CA, TA, and VA are used in three separate
feedback loops to force the charger into constant-current,
temperature, or voltage mode, respectively. Diodes, D1,
D2, and D3 provide priority to whichever loop is trying to
reduce the charging current the most. The outputs of the
other two amplifiers saturate low which effectively re-
moves their loops from the system. When in constant-
current mode, CA servos the voltage at the PROG pin to be
precisely 1.50V (or 0.15V when in trickle-charge mode).
TA limits the die temperature to approximately 105
°
C
when in constant-temperature mode and the PROG pin
voltage gives an indication of the charge current as dis-
cussed in “Programming Charge Current” . VA servos its
inverting input to precisely 2.485V when in constant-
voltage mode and the internal resistor divider made up of
R1 and R2 ensures that the battery voltage is maintained
at either 4.1V or 4.2V. Again, the PROG pin voltage gives
an indication of the charge current.
In typical operation, the charge cycle begins in constant-
current mode with the current delivered to the battery
equal to 1500V/R
PROG
. If the power dissipation of the
LTC1733 results in the junction temperature approaching
105
°
C, the amplifier (TA) will begin decreasing the charge
current to limit the die temperature to approximately
105
°
C. As the battery voltage rises, the LTC1733 either
returns to constant-current mode or it enters constant-
voltage mode straight from constant-temperature mode.
Regardless of mode, the voltage at the PROG pin is
proportional to the current being delivered to the battery.
Power Dissipation
The conditions that cause the LTC1733 to reduce charge
current due to the thermal protection feedback can be
approximated by considering the power dissipated in the
IC. For high charge currents, the LTC1733 power dissipa-
tion is approximately:
P
D
= (V
CC
– V
BAT
) I
BAT
where P
D
is the power dissipated, V
CC
is the input supply
voltage, V
BAT
is the battery voltage, and I
BAT
is the battery
charge current. It is not necessary to perform any worst-
case power dissipation scenarios because the LTC1733
will automatically reduce the charge current to maintain
the die temperature at approximately 105
°
C. However, the
approximate ambient temperature at which the thermal
feedback begins to protect the IC is:
T
A
= 105
°
C – P
D
θ
JA
T
A
= 105
°
C – (V
CC
– V
BAT
) I
BAT
θ
JA
Example: Consider an LTC1733 operating from a 5V wall
adapter providing 1.2A to a 3.75V Li-Ion battery. The
ambient temperature above which the LTC1733 will begin
to reduce the 1.2A charge current is approximately:
T
A
= 105
°
C – (5V – 3.75V) 1.2A 40
°
C/W
T
A
= 105
°
C – 1.5W 40
°
C/W = 105
°
C – 60
°
C = 45
°
C
The LTC1733 can be used above 45
°
C, but the charge
current will be reduced below 1.2A. The approximate
charge current at a given ambient temperature can be
approximated by:
I
C
T
)
θ
V
(
V
BAT
A
CC
BAT
JA
=
°
105
Consider the above example with an ambient temperature
of 55
°
C. The charge current will be reduced to approxi-
mately:
APPLICATIOU
W
U
U
相關(guān)PDF資料
PDF描述
LTC1734 Lithium-Ion Linear Battery Charger in SOT-23(鋰離子線性電池充電器(SOT-23封裝))
LTC1735IS RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LTC1735C-1 RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LTC1735CS-1 RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LTC1735IS-1 RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1733EMSE#PBF 功能描述:IC CHRGR BATT MONO THERML 10MSOP RoHS:是 類(lèi)別:集成電路 (IC) >> PMIC - 電池管理 系列:- 其它有關(guān)文件:STC3100 View All Specifications 特色產(chǎn)品:STC3100 - Battery Monitor IC 標(biāo)準(zhǔn)包裝:4,000 系列:- 功能:燃料,電量檢測(cè)計(jì)/監(jiān)控器 電池化學(xué):鋰離子(Li-Ion) 電源電壓:2.7 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:8-TSSOP,8-MSOP(0.118",3.00mm 寬) 供應(yīng)商設(shè)備封裝:8-MiniSO 包裝:帶卷 (TR) 其它名稱:497-10526-2
LTC1733EMSE#PBF 制造商:Linear Technology 功能描述:Battery Management IC
LTC1733EMSE#TR 功能描述:IC CTRLR BATT CHRG LI-ION 10MSOP RoHS:否 類(lèi)別:集成電路 (IC) >> PMIC - 電池管理 系列:- 標(biāo)準(zhǔn)包裝:61 系列:- 功能:電源管理 電池化學(xué):鋰離子(Li-Ion)、鋰聚合物(Li-Pol) 電源電壓:4.35 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:22-WFDFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:22-DFN(6x3)裸露焊盤(pán) 包裝:管件
LTC1733EMSE#TRPBF 功能描述:IC CHRGR BATT MONO THERML 10MSOP RoHS:是 類(lèi)別:集成電路 (IC) >> PMIC - 電池管理 系列:- 標(biāo)準(zhǔn)包裝:61 系列:- 功能:電源管理 電池化學(xué):鋰離子(Li-Ion)、鋰聚合物(Li-Pol) 電源電壓:4.35 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:22-WFDFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:22-DFN(6x3)裸露焊盤(pán) 包裝:管件
LTC1734ES6-4.1#TR 功能描述:IC BATT CHRGR LI-ION LIN SOT23-6 RoHS:否 類(lèi)別:集成電路 (IC) >> PMIC - 電池管理 系列:- 標(biāo)準(zhǔn)包裝:61 系列:- 功能:電源管理 電池化學(xué):鋰離子(Li-Ion)、鋰聚合物(Li-Pol) 電源電壓:4.35 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類(lèi)型:表面貼裝 封裝/外殼:22-WFDFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:22-DFN(6x3)裸露焊盤(pán) 包裝:管件