參數(shù)資料
型號: LTC1735IS-1
廠商: LINEAR TECHNOLOGY CORP
元件分類: 穩(wěn)壓器
英文描述: RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
中文描述: 3 A SWITCHING CONTROLLER, 550 kHz SWITCHING FREQ-MAX, PDSO16
封裝: 0.150 INCH, PLASTIC, SO-16
文件頁數(shù): 12/32頁
文件大小: 373K
代理商: LTC1735IS-1
12
LTC1735
Inductor Core Selection
Once the value for L is known, the type of inductor must be
selected. High efficiency converters generally cannot af-
ford the core loss found in low cost powdered iron cores,
forcing the use of more expensive ferrite, molypermalloy
or Kool M
μ
cores. Actual core loss is independent of
core size for a fixed inductor value, but it is very dependent
on inductance selected. As inductance increases, core
losses go down. Unfortunately, increased inductance re-
quires more turns of wire and therefore copper losses will
increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can con-
centrate on copper loss and preventing saturation. Ferrite
core material saturates “hard,” which means that induc-
tance collapses abruptly when the peak design current is
exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Molypermalloy (from Magnetics, Inc.) is a very good, low
loss core material for toroids, but it is more expensive than
ferrite. A reasonable compromise from the same manu-
facturer is Kool M
μ
. Toroids are very space efficient,
especially when you can use several layers of wire. Be-
cause they generally lack a bobbin, mounting is more
difficult. However, designs for surface mount are available
that do not increase the height significantly.
Power MOSFET and D1 Selection
Two external power MOSFETs must be selected for use
with the LTC1735: An N-channel MOSFET for the top
(main) switch and an N-channel MOSFET for the bottom
(synchronous) switch.
The peak-to-peak gate drive levels are set by the INTV
CC
voltage. This voltage is typically 5.2V during start-up (see
EXTV
CC
pin connection). Consequently, logic-level thresh-
old MOSFETs must be used in most LTC1735 applica-
tions. The only exception is when low input voltage is
expected (V
IN
< 5V); then, sub-logic level threshold
MOSFETs (V
GS(TH)
< 3V) should be used. Pay close
attention to the BV
DSS
specification for the MOSFETs as
well; many of the logic level MOSFETs are limited to 30V
or less.
APPLICATIU
W
U
U
Kool M
μ
is a registered trademark of Magnetics, Inc.
Selection criteria for the power MOSFETs include the “ON”
resistance R
DS(ON)
, reverse transfer capacitance C
RSS
,
input voltage and maximum output current. When the
LTC1735 is operating in continuous mode the duty cycles
for the top and bottom MOSFETs are given by:
MainSwitchDutyCycle
V
V
OUT
IN
=
SynchronousSwitchDutyCycle
V
V
V
IN
OUT
IN
=
The MOSFET power dissipations at maximum output
current are given by:
P
V
V
I
R
k V
(
I
C
f
MAIN
OUT
IN
MAX
DS ON
(
IN
MAX
RSS
=
(
)
)(
+
(
)
+
) (
)( )
2
2
1
δ
)
P
V
V
V
I
R
SYNC
IN
OUT
IN
MAX
DS ON
(
=
(
)
+
(
)
)
2
1
δ
where
δ
is the temperature dependency of R
DS(ON)
and k
is a constant inversely related to the gate drive current.
Both MOSFETs have I
2
R losses while the topside
N-channel equation includes an additional term for transi-
tion losses, which are highest at high input voltages. For
V
IN
< 20V the high current efficiency generally improves
with larger MOSFETs, while for V
IN
> 20V the transition
losses rapidly increase to the point that the use of a higher
R
DS(ON)
device with lower C
RSS
actually provides higher
efficiency. The synchronous MOSFET losses are greatest
at high input voltage or during a short-circuit when the
duty cycle in this switch is nearly 100%.
The term (1 +
δ
) is generally given for a MOSFET in the
form of a normalized R
DS(ON)
vs Temperature curve, but
δ
= 0.005/
°
C can be used as an approximation for low
voltage MOSFETs. C
RSS
is usually specified in the
MOSFET characteristics. The constant k = 1.7 can be
used to estimate the contributions of the two terms in the
main switch dissipation equation.
相關(guān)PDF資料
PDF描述
LTC1735-1 RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LTC1735C RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LTC1735CGN RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LTC1735CS RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
LTC1735I RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1735IS-1#PBF 功能描述:IC REG CTRLR BUCK PWM CM 16-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)
LTC1735IS-1#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 16-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)
LTC1736CG 功能描述:IC SW REG STEP-DOWN SYNC 24-SSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件
LTC1736CG#PBF 功能描述:IC SW REG STEP-DONW SYNC 24-SSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件
LTC1736CG#TR 功能描述:IC REG SW SYNC STEPDWN HE 24SSOP RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 標(biāo)準(zhǔn)包裝:43 系列:- 應(yīng)用:控制器,Intel VR11 輸入電壓:5 V ~ 12 V 輸出數(shù):1 輸出電壓:0.5 V ~ 1.6 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:48-VFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:48-QFN(7x7) 包裝:管件