Controllers with I2C/SP" />
參數(shù)資料
型號: MAX11801EVKIT+
廠商: Maxim Integrated Products
文件頁數(shù): 16/59頁
文件大?。?/td> 0K
描述: KIT EVAL TOUCH SCREEN
其它有關文件: Automotive Product Guide
標準包裝: 1
主要目的: 接口,觸摸屏控制器
嵌入式:
已用 IC / 零件: MAX11801
主要屬性: 圖形用戶界面(GUI)
次要屬性: USB,I2C接口
已供物品:
MAX11800–MAX11803
Low-Power, Ultra-Small Resistive Touch-Screen
Controllers with I2C/SPI Interface
______________________________________________________________________________________
23
Combined Commands
Combined commands reduce AP interaction with the
MAX11800–MAX11803 by allowing multiple measure-
ments. For example, the MAX11800–MAX11803 can be
instructed to provide X and Y data, or X and Y and Z1
data, or X and Y and Z1 and Z2 data using a single
command.
Data Tagging
In direct conversion modes, all measurement data is
contained in a 16-bit word. X, Y, Z1, and Z2 information
is stored independently. Each word consists of 12 bits
of measurement data plus a 2-bit measurement type
(MTAG) and a 2-bit event tag (ETAG). The measure-
ment tag identifies whether the data represents an X, Y,
Z1, or Z2 result. The event tag indicates the point at
which the data is sampled (initial, midpress, or release)
during the touch event. When trying to read a result that
is pending, the entire data stream is read back as
FFFFh and the event tag as 11b, indicating that the cor-
responding measurement is in progress and that the
data stream is to be ignored. For combined commands,
all data locations requested by the command are
marked FFFFh, pending the completion of the entire
command and the proper tagging of the data. See
Table 5.
Direct conversion modes do not use the internal FIFO
or support the aperture function (see the
Aperture
Modes and Options section). Each measurement type
uses a single location in the (16-bit) memory. The AP
must retrieve the data from the last requested measure-
ment before moving on to the next measurement of the
type.
Auxiliary measurement data is not tagged because it is
not related to panel operation. Auxiliary measurement
data is stored and read back identically to the other
direct conversion data. The tag locations for auxiliary
measurement data are always set to 0000b, unless the
read occurs when an auxiliary measurement is in
progress. In this situation, the tag locations read 1111b
and the data stream reads back FFFFh.
Low-Power Modes
There are also two low-power modes, LPM and TDM.
LPM only applies when in DCM with edge interrupt
mode or ACM during periods following a conversion
where the panel was observed to be touched and a
subsequent panel measurement is required and/or
scheduled.
During LPM, all circuitry is off, including the on-chip
touch-detect pullup resistors used in the touch-detect
circuitry. In direct conversion modes, a user-request ini-
tiates the next operation and all circuitry is off until a
user-command is received. Therefore, the current con-
sumption is primarily due to junction leakage. In
autonomous conversion mode, an on-chip oscillator
and timer are constantly running. Therefore, the device
current consumption is primarily determined by the
oscillator and timer.
During TDM, all circuitry is off except the on-chip pullup
resistor. This is an untimed mode (oscillator and timer
are off) for both ACM and DCM (no digital current). This
mode only consumes current through the on-chip
pullup resistor when a touch is present. The device can
be powered down through register 0x0B when no panel
input is expected or needed, and, therefore, no power
is consumed through the panel.
INDEX
15
14
13
12
11
10
9
8
7
65
4321
0
Byte
MSB Byte
LSB Byte
12-Bit Content
Position MSBs
Position LSBs
Measure
Event
8-Bit Content
Position Data
Trailing Zeros*
Measure
Event
Table 5. Data Word Structure (All Direct Conversion Modes)
NUMBER OF
SAMPLES TAKEN
NUMBER OF HIGH
SAMPLES REMOVED
NUMBER OF LOW
SAMPLES REMOVED
NUMBER OF
REMAINING SAMPLES
AVERAGED
14
11
2
28
22
4
316
4
8
Table 4. Median Averaging Operations
*
When using averaging with 8-bit conversions, these positions may be filled with fractional data due to averaging operations.
相關PDF資料
PDF描述
MAX11800EVKIT+ KIT EVAL TOUCH SCREEN
MAX11080EVKIT+ KIT FAULT MONITOR 12CH HV
MAX11080EVKIT KIT FAULT MONITOR 12CH HV
382LX223M080B062VS CAP ALUM 22000UF 80V 20% SNAP
ECM30DCAH-S189 CONN EDGECARD 60POS R/A .156 SLD
相關代理商/技術參數(shù)
參數(shù)描述
MAX11801EVKIT+ 功能描述:數(shù)據(jù)轉換 IC 開發(fā)工具 MAX11801 Eval Kit RoHS:否 制造商:Texas Instruments 產(chǎn)品:Demonstration Kits 類型:ADC 工具用于評估:ADS130E08 接口類型:SPI 工作電源電壓:- 6 V to + 6 V
MAX11801EWC+ 制造商:Maxim Integrated Products 功能描述:
MAX11801EWC+T 功能描述:觸摸屏轉換器和控制器 I2C 4Ch Touch Screen Controller RoHS:否 制造商:Microchip Technology 類型:Resistive Touch Controllers 輸入類型:3 Key 數(shù)據(jù)速率:140 SPS 分辨率:10 bit 接口類型:4-Wire, 5-Wire, 8-Wire, I2C, SPI 電源電壓:2.5 V to 5.25 V 電源電流:17 mA 工作溫度:- 40 C to + 85 C 封裝 / 箱體:SSOP-20
MAX11801GTC/V+ 功能描述:觸摸屏轉換器和控制器 I2C 4Ch Touch Screen Controller RoHS:否 制造商:Microchip Technology 類型:Resistive Touch Controllers 輸入類型:3 Key 數(shù)據(jù)速率:140 SPS 分辨率:10 bit 接口類型:4-Wire, 5-Wire, 8-Wire, I2C, SPI 電源電壓:2.5 V to 5.25 V 電源電流:17 mA 工作溫度:- 40 C to + 85 C 封裝 / 箱體:SSOP-20
MAX11801GTC/V+T 功能描述:觸摸屏轉換器和控制器 I2C 4Ch Touch Screen Controller RoHS:否 制造商:Microchip Technology 類型:Resistive Touch Controllers 輸入類型:3 Key 數(shù)據(jù)速率:140 SPS 分辨率:10 bit 接口類型:4-Wire, 5-Wire, 8-Wire, I2C, SPI 電源電壓:2.5 V to 5.25 V 電源電流:17 mA 工作溫度:- 40 C to + 85 C 封裝 / 箱體:SSOP-20