參數(shù)資料
型號: MAX4173TEUT-T
廠商: Maxim Integrated Products
文件頁數(shù): 8/10頁
文件大?。?/td> 0K
描述: IC AMP HISIDE CURR V-OUT SOT23-6
產(chǎn)品培訓(xùn)模塊: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
標(biāo)準(zhǔn)包裝: 2,500
放大器類型: 電流檢測
電路數(shù): 1
-3db帶寬: 1.7MHz
電流 - 輸入偏壓: 700µA
電壓 - 輸入偏移: 300µV
電流 - 電源: 420µA
電壓 - 電源,單路/雙路(±): 3 V ~ 28 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: SOT-23-6
供應(yīng)商設(shè)備封裝: SOT-6
包裝: 帶卷 (TR)
Low-Cost, SOT23, Voltage-Output,
High-Side Current-Sense Amplifier
Detailed Description
The MAX4173 high-side current-sense amplifier fea-
tures a 0 to +28V input common-mode range that is
independent of supply voltage. This feature allows the
monitoring of current out of a battery in deep discharge
and also enables high-side current sensing at voltages
greater than the supply voltage (VCC).
The MAX4173 operates as follows: Current from the
source flows through RSENSE to the load (Figure 1). Since
the internal-sense amplifier’s inverting input has high
impedance, negligible current flows through RG2
(neglecting the input bias current). Therefore, the
sense amplifier’s inverting-input voltage equals
VSOURCE - (ILOAD)(RSENSE). The amplifier’s open-loop
gain forces its noninverting input to the same voltage as
the inverting input. Therefore, the drop across RG1
equals (ILOAD)(RSENSE). Since IRG1 flows through RG1,
IRG1 = (ILOAD)(RSENSE) / RG1. The internal current mirror
multiplies IRG1 by a current gain factor,
β, to give
IRGD =
β IRG1. Solving IRGD = β (ILOAD)(RSENSE) /
RG1. Assuming infinite output impedance, VOUT = (IRGD)
(RGD). Substituting in for IRGD and rearranging, VOUT =
β (RGD / RG1)(RSENSE ILOAD). The parts gain equals
β RGD / RG1. Therefore, VOUT = (GAIN) (RSENSE)
(ILOAD), where GAIN = 20 for MAX4173T, GAIN = 50 for
MAX4173F, and GAIN = 100 for MAX4173H.
Set the full-scale output range by selecting RSENSE and
the appropriate gain version of the MAX4173.
Applications Information
Recommended Component Values
The MAX4173 senses a wide variety of currents with
different sense resistor values. Table 1 lists common
resistor values for typical operation of the MAX4173.
Choosing RSENSE
To measure lower currents more accurately, use a high
value for RSENSE. The high value develops a higher
sense voltage that reduces offset voltage errors of the
internal op amp.
In applications monitoring very high currents, RSENSE
must be able to dissipate the I2R losses. If the resistor’s
rated power dissipation is exceeded, its value may drift
or it may fail altogether, causing a differential voltage
across the terminals in excess of the absolute maxi-
mum ratings.
If ISENSE has a large high-frequency component, mini-
mize the inductance of RSENSE. Wire-wound resistors
have the highest inductance, metal-film resistors are
somewhat better, and low-inductance metal-film resis-
tors are best suited for these applications.
Using a PCB Trace as RSENSE
If the cost of RSENSE is an issue and accuracy is not
critical, use the alternative solution shown in Figure 2.
This solution uses copper PC board traces to create a
sense resistor. The resistivity of a 0.1-inch-wide trace of
2-ounce copper is approximately 30m
/ft. The resis-
tance-temperature coefficient of copper is fairly high
(approximately 0.4%/°C), so systems that experience a
wide temperature variance must compensate for this
effect. In addition, do not exceed the maximum power
dissipation of the copper trace.
For example, the MAX4173T (with a maximum load cur-
rent of 10A and an RSENSE of 5m
) creates a full-scale
VSENSE of 50mV that yields a maximum VOUT of 1V.
RSENSE in this case requires about 2 inches of 0.1 inch-
wide copper trace.
Output Impedance
The output of the MAX4173 is a current source driving a
12k
resistance. Resistive loading added to OUT
reduces the output gain of the MAX4173. To minimize
output errors for most applications, connect OUT to a
high-impedance input stage. When output buffering is
required, choose an op amp with a common-mode
input range and an output voltage swing that includes
ground when operating with a single supply. The op
RSENSE
VSOURCE
0 TO +28V
+3V TO +28V
RGD = 12k
VOUT
IRG1
IRGD
ILOAD
RG1
RG2
RS-
RS+
OUT
GND
TO LOAD BATTERY
VCC
CURRENT
MIRROR
A1
MAX4173
Figure 1. Functional Diagram
Maxim Integrated
7
MAX4173
相關(guān)PDF資料
PDF描述
MAX4174AOEUK+T IC OPAMP SGL/DUAL FIXED SOT23-5
MAX4181EUT+T IC AMP CURRENT SENSE SOT23-6
MAX4197ESA IC AMP INSTR PREC R-TO-R 8-SOIC
MAX4198ESA+T IC AMP DIFF PREC R-R 8-SOIC
MAX419ESD+T IC OP AMP QUAD SS 14-SOIC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MAX4174 制造商:MAXIM 制造商全稱:Maxim Integrated Products 功能描述:SOT23, Rail-to-Rail, Fixed-Gain GainAmps/Open-Loop Op Amps
MAX4174_EUK-T 制造商:MAXIM 制造商全稱:Maxim Integrated Products 功能描述:SOT23, Rail-to-Rail, Fixed-Gain GainAmps/Open-Loop Op Amps
MAX4174ABESA 制造商:Maxim Integrated Products 功能描述:
MAX4174ABEUK 制造商:Rochester Electronics LLC 功能描述: 制造商:Maxim Integrated Products 功能描述:
MAX4174ABEUK-T 功能描述:運(yùn)算放大器 - 運(yùn)放 Integrated Circuits (ICs) RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補(bǔ)償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-16 轉(zhuǎn)換速度:0.89 V/us 關(guān)閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel