參數(shù)資料
型號(hào): MC33172DR2G
廠商: ON Semiconductor
文件頁(yè)數(shù): 12/15頁(yè)
文件大?。?/td> 0K
描述: IC OPAMP DUAL LOW POWER 8SOIC
標(biāo)準(zhǔn)包裝: 1
放大器類(lèi)型: 通用
電路數(shù): 2
轉(zhuǎn)換速率: 2.1 V/µs
增益帶寬積: 1.8MHz
電流 - 輸入偏壓: 20nA
電壓 - 輸入偏移: 2000µV
電流 - 電源: 220µA
電流 - 輸出 / 通道: 27mA
電壓 - 電源,單路/雙路(±): 3 V ~ 44 V,±1.5 V ~ 22 V
工作溫度: -40°C ~ 85°C
安裝類(lèi)型: 表面貼裝
封裝/外殼: 8-SOIC(0.154",3.90mm 寬)
供應(yīng)商設(shè)備封裝: 8-SOICN
包裝: 標(biāo)準(zhǔn)包裝
產(chǎn)品目錄頁(yè)面: 1130 (CN2011-ZH PDF)
其它名稱(chēng): MC33172DR2GOSDKR
MC33171, 2, 4, NCV33172, 4
http://onsemi.com
6
APPLICATIONS INFORMATION CIRCUIT DESCRIPTION/PERFORMANCE FEATURES
Although the bandwidth, slew rate, and settling time of the
MC33171/72/74 amplifier family is similar to low power op
amp products utilizing JFET input devices, these amplifiers
offer additional advantages as a result of the PNP transistor
differential inputs and an all NPN transistor output stage.
Because the input common mode voltage range of this
input stage includes the VEE potential, single supply
operation is feasible to as low as 3.0 V with the common
mode input voltage at ground potential.
The input stage also allows differential input voltages up
to
±44 V, provided the maximum input voltage range is not
exceeded. Specifically, the input voltages must range
between VCC and VEE supply voltages as shown by the
maximum rating table. In practice, although not
recommended, the input voltages can exceed the VCC
voltage by approximately 3.0 V and decrease below the VEE
voltage by 0.3 V without causing product damage, although
output phase reversal may occur. It is also possible to source
up to 5.0 mA of current from VEE through either inputs’
clamping diode without damage or latching, but phase
reversal may again occur. If at least one input is within the
common mode input voltage range and the other input is
within the maximum input voltage range, no phase reversal
will occur. If both inputs exceed the upper common mode
input voltage limit, the output will be forced to its lowest
voltage state.
Since the input capacitance associated with the small
geometry input device is substantially lower (0.8 pF) than
that of a typical JFET (3.0 pF), the frequency response for
a given input source resistance is greatly enhanced. This
becomes evident in DtoA current to voltage conversion
applications where the feedback resistance can form a pole
with the input capacitance of the op amp. This input pole
creates a 2nd Order system with the single pole op amp and
is therefore detrimental to its settling time. In this context,
lower input capacitance is desirable especially for higher
values of feedback resistances (lower current DACs). This
input pole can be compensated for by creating a feedback
zero with a capacitance across the feedback resistance, if
necessary, to reduce overshoot. For 10 k
W of feedback
resistance, the MC33171/72/74 family can typically settle to
within 1/2 LSB of 8 bits in 4.2
ms, and within 1/2 LSB of 12
bits in 4.8
ms for a 10 V step. In a standard inverting unity
gain fast settling configuration, the symmetrical slew rate is
typically
±2.1 V/ms. In the classic noninverting unity gain
configuration the typical output positive slew rate is also
2.1 V/
ms, and the corresponding negative slew rate will
usually exceed the positive slew rate as a function of the fall
time of the input waveform.
The all NPN output stage, shown in its basic form on the
equivalent circuit schematic, offers unique advantages over
the more conventional NPN/PNP transistor Class AB output
stage. A 10 k
W load resistance can typically swing within
0.8 V of the positive rail (VCC) and negative rail (VEE),
providing a 28.4 Vpp swing from
±15 V supplies. This large
output swing becomes most noticeable at lower supply
voltages.
The positive swing is limited by the saturation voltage of
the current source transistor Q7, the VBE of the NPN pullup
transistor Q17, and the voltage drop associated with the
short circuit resistance, R5. For sink currents less than
0.4 mA, the negative swing is limited by the saturation
voltage of the pulldown transistor Q15, and the voltage
drop across R4 and R5. For small valued sink currents, the
above voltage drops are negligible, allowing the negative
swing voltage to approach within millivolts of VEE. For sink
currents (> 0.4 mA), diode D3 clamps the voltage across R4.
Thus the negative swing is limited by the saturation voltage
of Q15, plus the forward diode drop of D3 (
≈VEE +1.0 V).
Therefore an unprecedented peaktopeak output voltage
swing is possible for a given supply voltage as indicated by
the output swing specifications.
If the load resistance is referenced to VCC instead of
ground for single supply applications, the maximum
possible output swing can be achieved for a given supply
voltage. For light load currents, the load resistance will pull
the output to VCC during the positive swing and the output
will pull the load resistance near ground during the negative
swing. The load resistance value should be much less than
that of the feedback resistance to maximize pullup
capability.
Because the PNP output emitterfollower transistor has
been eliminated, the MC33171/72/74 family offers a 15 mA
minimum current sink capability, typically to an output
voltage of (VEE +1.8 V). In single supply applications the
output can directly source or sink base current from a
common emitter NPN transistor for current switching
applications.
In addition, the all NPN transistor output stage is
inherently faster than PNP types, contributing to the bipolar
amplifier’s improved gain bandwidth product. The
associated high frequency low output impedance (200
W typ
@ 1.0 MHz) allows capacitive drive capability from 0 pF to
400 pF without oscillation in the noninverting unity gain
configuration. The 60
° phase margin and 15 dB gain margin,
as well as the general gain and phase characteristics, are
virtually independent of the source/sink output swing
conditions. This allows easier system phase compensation,
since output swing will not be a phase consideration. The AC
characteristics of the MC33171/72/74 family also allow
excellent active filter capability, especially for low voltage
single supply applications.
Although the single supply specification is defined at
5.0 V, these amplifiers are functional to at least 3.0 V @
25
°C. However slight changes in parametrics such as
bandwidth, slew rate, and DC gain may occur.
相關(guān)PDF資料
PDF描述
TSW-112-14-L-D CONN HEADER 24POS .100" DL GOLD
SSW-119-01-G-D CONN RCPT .100" 38POS DUAL GOLD
SQT-122-01-L-S CONN RCPT 2MM 22POS SGL VERT PCB
TSW-118-08-T-D-RA CONN HEADER 36PS .100 DL R/A TIN
RMCF0402FT6K49 RES TF 6.49K OHM 1% 1/16W 0402
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MC33172DR2G 制造商:ON Semiconductor 功能描述:Operational Amplifier (Op-Amp) IC
MC33172DR2G-CUT TAPE 制造商:ON 功能描述:MC Series 2.1 V/us 44 V Single Supply Low Power Operational Amplifier - SOIC-8
MC33172DT 功能描述:運(yùn)算放大器 - 運(yùn)放 Dual Low Power RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補(bǔ)償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-16 轉(zhuǎn)換速度:0.89 V/us 關(guān)閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel
MC33172DT 制造商:STMicroelectronics 功能描述:Operational Amplifier (Op-Amp) IC
MC33172-MC35172 制造商:STMICROELECTRONICS 制造商全稱(chēng):STMicroelectronics 功能描述:LOW POWER DUAL BIPOLAR OPERATIONAL AMPLIFIERS