Serial Communications Interface (SCI)
I/O Registers
MC68HC08AS32 — Rev. 3.0
Advance Information
MOTOROLA
Serial Communications Interface (SCI)
267
NON-DISCLOSURE
AGREEMENT
REQUIRED
in SCC3 is clear. Clear the IDLE bit by reading SCS1 with IDLE set
and then reading the SCDR. After the receiver is enabled, it must
receive a valid character that sets the SCRF bit before an idle
condition can set the IDLE bit. Also, after the IDLE bit has been
cleared, a valid character must again set the SCRF bit before an idle
condition can set the IDLE bit. Reset clears the IDLE bit.
1 = Receiver input idle
0 = Receiver input active (or idle since the IDLE bit was cleared)
OR — Receiver Overrun Bit
This clearable, read-only bit is set when software fails to read the
SCDR before the receive shift register receives the next character.
The OR bit generates an SCI error CPU interrupt request if the ORIE
bit in SCC3 is also set. The data in the shift register is lost, but the data
already in the SCDR is not affected. Clear the OR bit by reading SCS1
with OR set and then reading the SCDR. Reset clears the OR bit.
1 = Receive shift register full and SCRF = 1
0 = No receiver overrun
Software latency may allow an overrun to occur between reads of
SCS1 and SCDR in the flag-clearing sequence. Figure 17-10 shows
the normal flag-clearing sequence and an example of an overrun
caused by a delayed flag-clearing sequence. The delayed read of
SCDR does not clear the OR bit because OR was not set when SCS1
was read. Byte 2 caused the overrun and is lost. The next
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.
In applications that are subject to software latency or in which it is
important to know which byte is lost due to an overrun, the
flag-clearing routine can check the OR bit in a second read of SCS1
after reading the data register.
NF — Receiver Noise Flag Bit
This clearable, read-only bit is set when the SCI detects noise on the
PTE1/RxD pin. NF generates an NF CPU interrupt request if the NEIE
bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then
reading the SCDR. Reset clears the NF bit.
1 = Noise detected
0 = No noise detected