Functional Description
MC68HC08GZ32 Data Sheet, Rev. 3
Freescale Semiconductor
55
4.3.1 Crystal Oscillator Circuit
The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the
input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration
module (SIM) or the OSCSTOPENB bit in the MOR register enable the crystal oscillator circuit.
The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal
frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock.
CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of
CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal and related
external components. An externally generated clock also can feed the OSC1 pin of the crystal oscillator
circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float.
4.3.2 Phase-Locked Loop Circuit (PLL)
The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending
on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes
either automatically or manually.
4.3.3 PLL Circuits
The PLL consists of these circuits:
Voltage-controlled oscillator (VCO)
Modulo VCO frequency divider
Phase detector
Loop filter
Lock detector
The operating range of the VCO is programmable for a wide range of frequencies and for maximum
immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range
from roughly one-half to twice the center-of-range frequency, fVRS. Modulating the voltage on the
CGMXFC pin changes the frequency within this range. By design, fVRS is equal to the nominal
center-of-range frequency, fNOM, (71.4 kHz) times a linear factor, L, and a power-of-two factor, E, or
(L
× 2E)f
NOM.
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency,
fRCLK. The VCO’s output clock, CGMVCLK, running at a frequency, fVCLK, is fed back through a
programmable modulo divider. The modulo divider reduces the VCO clock by a factor, N. The dividers
output is the VCO feedback clock, CGMVDV, running at a frequency, fVDV =fVCLK/(N). (For more
The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock,
CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The
loop filter then slightly alters the DC voltage on the external capacitor connected to CGMXFC based on
the width and direction of the correction pulse. The filter can make fast or slow corrections depending on
reference frequency determines the speed of the corrections and the stability of the PLL.
The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the reference
clock, CGMRCLK. Therefore, the speed of the lock detector is directly proportional to the reference
frequency, fRCLK. The circuit determines the mode of the PLL and the lock condition based on this
comparison.