Clock Generator Module (CGMC)
MC68HC908GR8 MC68HC908GR4 Data Sheet, Rev. 7
86
Freescale Semiconductor
7.7.2 Stop Mode
If the OSCSTOPENB bit in the CONFIG register is cleared (default), then the STOP instruction disables
the CGMC (oscillator and phase locked loop) and holds low all CGMC outputs (CGMXCLK, CGMOUT,
and CGMINT).
If the STOP instruction is executed with the VCO clock, CGMVCLK, divided by two driving CGMOUT, the
PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the crystal
clock, CGMXCLK, divided by two as the source of CGMOUT. When the MCU recovers from STOP, the
crystal clock divided by two drives CGMOUT and BCS remains clear.
If the OSCSTOPENB bit in the CONFIG register is set, then the phase locked loop is shut off but the
oscillator will continue to operate in stop mode.
7.7.3 CGMC During Break Interrupts
The system integration module (SIM) controls whether status bits in other modules can be cleared during
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status
bit is cleared during the break state, it remains cleared when the MCU exits the break state.
To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its
default state), software can read and write the PLL control register during the break state without affecting
the PLLF bit.
7.8 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design
parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock
times.
7.8.1 Acquisition/Lock Time Definitions
Typical control systems refer to the acquisition time or lock time as the reaction time, within specified
tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or
when it suffers a noise hit. The tolerance is usually specified as a percentage of the step input or when
the output settles to the desired value plus or minus a percentage of the frequency change. Therefore,
the reaction time is constant in this definition, regardless of the size of the step input. For example,
consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to
change from 0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach
1MHz
±50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers
a –100-kHz noise hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz
±5kHz.
Five kHz = 5% of the 100-kHz step input.
Other systems refer to acquisition and lock times as the time the system takes to reduce the error between
the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock
time varies according to the original error in the output. Minor errors may not even be registered. Typical
PLL applications prefer to use this definition because the system requires the output frequency to be
within a certain tolerance of the desired frequency regardless of the size of the initial error.