Clock Generator Module (CGM)
Data Sheet
MC68HC908GR60A MC68HC908GR48A MC68HC908GR32A
96
Clock Generator Module (CGM)
MOTOROLA
in the PLL control register (PCTL) to save power. Less power-sensitive
applications can disengage the PLL without turning it off, so that the PLL clock is
immediately available at WAIT exit. This would be the case also when the PLL is
to wake the MCU from wait mode, such as when the PLL is first enabled and
waiting for LOCK or LOCK is lost.
4.7.2 Stop Mode
If the OSCENINSTOP bit in the CONFIG2 register is cleared (default), then the
STOP instruction disables the CGM (oscillator and phase locked loop) and holds
low all CGM outputs (CGMXCLK, CGMOUT, and CGMINT).
If the OSCENINSTOP bit in the CONFIG2 register is set, then the phase locked
loop is shut off but the oscillator will continue to operate in stop mode.
4.7.3 CGM During Break Interrupts
The system integration module (SIM) controls whether status bits in other modules
can be cleared during the break state. The BCFE bit in the SIM break flag control
register (SBFCR) enables software to clear status bits during the break state. (See
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE
bit. If a status bit is cleared during the break state, it remains cleared when the MCU
exits the break state.
To protect the PLLF bit during the break state, write a 0 to the BCFE bit. With BCFE
at 0 (its default state), software can read and write the PLL control register during
the break state without affecting the PLLF bit.
4.8 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the most
critical PLL design parameters. Proper design and use of the PLL ensures the
highest stability and lowest acquisition/lock times.
4.8.1 Acquisition/Lock Time Definitions
Typical control systems refer to the acquisition time or lock time as the reaction
time, within specified tolerances, of the system to a step input. In a PLL, the step
input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance
is usually specified as a percent of the step input or when the output settles to the
desired value plus or minus a percent of the frequency change. Therefore, the
reaction time is constant in this definition, regardless of the size of the step input.
For example, consider a system with a 5 percent acquisition time tolerance. If a
command instructs the system to change from 0 Hz to 1 MHz, the acquisition time
is the time taken for the frequency to reach 1 MHz
±50 kHz. Fifty kHz = 5% of the
1-MHz step input. If the system is operating at 1 MHz and suffers a –100-kHz noise