Functional Description
MC68HC908GR60A MC68HC908GR48A MC68HC908GR32A Data Sheet, Rev. 5
Freescale Semiconductor
247
compare value may cause the compare to be missed. The TIM2 may pass the new value before it is
written.
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:
When changing to a smaller value, enable channel x output compare interrupts and write the new
value in the output compare interrupt routine. The output compare interrupt occurs at the end of
the current output compare pulse. The interrupt routine has until the end of the counter overflow
period to write the new value.
When changing to a larger output compare value, enable TIM2 overflow interrupts and write the
new value in the TIM2 overflow interrupt routine. The TIM2 overflow interrupt occurs at the end of
the current counter overflow period. Writing a larger value in an output compare interrupt routine
(at the end of the current pulse) could cause two output compares to occur in the same counter
overflow period.
18.3.3.2 Buffered Output Compare
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the
T2CH0 pin. The TIM2 channel registers of the linked pair alternately control the output.
Setting the MS0B bit in TIM2 channel 0 status and control register (T2SC0) links channel 0 and channel 1.
The output compare value in the TIM2 channel 0 registers initially controls the output on the T2CH0 pin.
Writing to the TIM2 channel 1 registers enables the TIM2 channel 1 registers to synchronously control the
output after the TIM2 overflows. At each subsequent overflow, the TIM2 channel registers (0 or 1) that
control the output are the ones written to last. T2SC0 controls and monitors the buffered output compare
function, and TIM2 channel 1 status and control register (T2SC1) is unused. While the MS0B bit is set,
the channel 1 pin, T2CH1, is available as a general-purpose I/O pin.
Channels 2 and 3 can be linked to form a buffered output compare channel whose output appears on the
T2CH2 pin. The TIM2 channel registers of the linked pair alternately control the output.
Setting the MS2B bit in TIM2 channel 2 status and control register (T2SC2) links channel 2 and channel 3.
The output compare value in the TIM2 channel 2 registers initially controls the output on the T2CH2 pin.
Writing to the TIM2 channel 3 registers enables the TIM2 channel 3 registers to synchronously control the
output after the TIM2 overflows. At each subsequent overflow, the TIM2 channel registers (2 or 3) that
control the output are the ones written to last. T2SC2 controls and monitors the buffered output compare
function, and TIM2 channel 3 status and control register (T2SC3) is unused. While the MS2B bit is set,
the channel 3 pin, T2CH3, is available as a general-purpose I/O pin.
Channels 4 and 5 can be linked to form a buffered output compare channel whose output appears on the
T2CH4 pin. The TIM2 channel registers of the linked pair alternately control the output.
Setting the MS4B bit in TIM2 channel 4 status and control register (T2SC4) links channel 4 and channel 5.
The output compare value in the TIM2 channel 4 registers initially controls the output on the T2CH4 pin.
Writing to the TIM2 channel 5 registers enables the TIM2 channel 5 registers to synchronously control the
output after the TIM2 overflows. At each subsequent overflow, the TIM2 channel registers (4 or 5) that
control the output are the ones written to last. T2SC4 controls and monitors the buffered output compare
function, and TIM2 channel 5 status and control register (T2SC5) is unused. While the MS4B bit is set,
the channel 5 pin, T2CH5, is available as a general-purpose I/O pin.
NOTE
In buffered output compare operation, do not write new output compare
values to the currently active channel registers. User software should track
the currently active channel to prevent writing a new value to the active