System Integration Module (SIM)
MC68HC908QL4 MC68HC908QL3 MC68HC908QL2 Data Sheet, Rev. 4
128
Freescale Semiconductor
13.6.2.2 Interrupt Status Register 3
IF15–I
F
22 — Interrupt Flags
These flags indicate the presence of interrupt requests from the sources shown in
Table 13-3
.
1 = Interrupt request present
0 = No interrupt request present
13.6.3 Reset
All reset sources always have equal and highest priority and cannot be arbitrated.
13.6.4 Break Interrupts
The break module can stop normal program flow at a software programmable break point by asserting its
break interrupt output. (See
Chapter 16 Development Support
.) The SIM puts the CPU into the break
state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to
see how each module is affected by the break state.
13.6.5 Status Flag Protection in Break Mode
The SIM controls whether status flags contained in other modules can be cleared during break mode. The
user can select whether flags are protected from being cleared by properly initializing the break clear flag
enable bit (BCFE) in the break flag control register (BFCR).
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This
protection allows registers to be freely read and written during break mode without losing status flag
information.
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,
a read of one register followed by the read or write of another — are protected, even when the first step
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step
will clear the flag as normal.
13.7 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low power- consumption mode for standby
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is
described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing
interrupts to occur.
Bit 7
6
5
4
3
2
1
Bit 0
Read:
IF22
IF21
IF20
IF19
IF18
IF17
IF16
IF15
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 13-13. Interrupt Status Register 3 (INT3)