160
ATtiny25/45/85 [DATASHEET]
2586Q–AVR–08/2013
Notes:
1. a = address high bits, b = address low bits, d = data in high bits, e = data in low bits, p = data out high bits, q = data out low
bits, x = don’t care, 1 = Lock Bit1, 2 = Lock Bit2, 3 = CKSEL0 Fuse, 4 = CKSEL1 Fuse, 5 = CKSEL2 Fuse, 6 = CKSEL3
Fuse, 7 = SUT0 Fuse, 8 = SUT1 Fuse, 9 = CKOUT Fuse, A = CKDIV8 Fuse, B = BODLEVEL0 Fuse, C = BODLEVEL1
Fuse, D = BODLEVEL2 Fuse, E = EESAVE Fuse, F = WDTON Fuse, G = SPIEN Fuse, H = DWEN Fuse, I = RSTDISBL
Fuse, J = SELFPRGEN Fuse
2. For page sizes less than 256 words, parts of the address (bbbb_bbbb) will be parts of the page address.
3. For page sizes less than 256 bytes, parts of the address (bbbb_bbbb) will be parts of the page address.
4. The EEPROM is written page-wise. But only the bytes that are loaded into the page are actually written to the EEPROM.
Page-wise EEPROM access is more efficient when multiple bytes are to be written to the same page. Note that auto-erase
of EEPROM is not available in High-voltage Serial Programming, only in SPI Programming.
Write Fuse
High Bits
SDI
SII
SDO
0_0100_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_IHGF_EDCB_00
0_0010_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0111_0100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0111_1100_00
x_xxxx_xxxx_xx
Wait after Instr. 4 until SDO
goes high. Write I - B = “0” to
program the Fuse bit.
Write Fuse
Extended Bits
SDI
SII
SDO
0_0100_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_0000_000J_00
0_0010_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_0110_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_1110_00
x_xxxx_xxxx_xx
Wait after Instr. 4 until SDO
goes high. Write J = “0” to
program the Fuse bit.
Write Lock
Bits
SDI
SII
SDO
0_0010_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_0000_0021_00
0_0010_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_0100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_1100_00
x_xxxx_xxxx_xx
Wait after Instr. 4 until SDO
goes high. Write 2 - 1 = “0” to
program the Lock bit.
Read Fuse
Low Bits
SDI
SII
SDO
0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_1100_00
A_9876_543x_xx
Reading A - 3 = “0” means
the Fuse bit is programmed.
Read Fuse
High Bits
SDI
SII
SDO
0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0111_1010_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0111_1110_00
I_HGFE_DCBx_xx
Reading I - B = “0” means the
Fuse bit is programmed.
Read Fuse
Extended Bits
SDI
SII
SDO
0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_1010_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_1110_00
x_xxxx_xxJx_xx
Reading J = “0” means the
Fuse bit is programmed.
Read Lock
Bits
SDI
SII
SDO
0_0000_0100_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0111_1100_00
x_xxxx_x21x_xx
Reading 2, 1 = “0” means the
Lock bit is programmed.
Read
Signature
Bytes
SDI
SII
SDO
0_0000_1000_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_0000_00bb_00
0_0000_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_1000_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0110_1100_00
q_qqqq_qqqx_xx
Repeats Instr 2 4 for each
signature byte address.
Read
Calibration
Byte
SDI
SII
SDO
0_0000_1000_00
0_0100_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0000_1100_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0111_1000_00
x_xxxx_xxxx_xx
0_0000_0000_00
0_0111_1100_00
p_pppp_pppx_xx
Load “No
Operation”
Command
SDI
SII
SDO
0_0000_0000_00
0_0100_1100_00
x_xxxx_xxxx_xx
Table 20-16. High-voltage Serial Programming Instruction Set for ATtiny25/45/85 (Continued)
Instruction
Instruction Format
Operation Remarks
Instr.1/5
Instr.2/6
Instr.3
Instr.4