參數(shù)資料
型號: MIC7122BMM
廠商: Micrel Inc
文件頁數(shù): 6/8頁
文件大?。?/td> 0K
描述: IC OPAMP R-R DUAL 8-MSOP
標準包裝: 100
系列: MM8™
放大器類型: 通用
電路數(shù): 2
輸出類型: 滿擺幅
轉換速率: 0.5 V/µs
增益帶寬積: 420kHz
電流 - 輸入偏壓: 1pA
電壓 - 輸入偏移: 500µV
電流 - 電源: 900µA
電流 - 輸出 / 通道: 250mA
電壓 - 電源,單路/雙路(±): 2.2 V ~ 15 V,±1.1 V ~ 7.5 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 8-TSSOP,8-MSOP(0.118",3.00mm 寬)
供應商設備封裝: 8-MSOP
包裝: 管件
MIC7122
Micrel
MIC7122
6
June 2005
Application Information
Input Common-Mode Voltage
The MIC7122 tolerates input overdrive by at least 300mV
beyond either rail without producing phase inversion.
If the absolute maximum input voltage is exceeded, the input
current should be limited to
±5mA maximum to prevent
reducing reliability. A 10k
series input resistor, used as a
current limiter, will protect the input structure from voltages as
large as 50V above the supply or below ground. See Figure
1.
VIN
VOUT
10k
RIN
Figure 1. Input Current-Limit Protection
Output Voltage Swing
Sink and source output resistances of the MIC7122 are
equal. Maximum output voltage swing is determined by the
load and the approximate output resistance. The output
resistance is:
R
V
I
OUT
DROP
LOAD
=
V
DROP is the voltage dropped within the amplifier output
stage. V
DROP and ILOAD can be determined from the VO
(output swing) portion of the appropriate Electrical Character-
istics table. I
LOAD is equal to the typical output high voltage
minus V+/2 and divided by R
LOAD. For example, using the
Electrical Characteristics DC (5V) table, the typical output
high voltage drops 13mV using a 2k
load (connected to V+/
2), which produces an I
LOAD of:
Because of output stage symmetry, the corresponding typical
output low voltage (13mV) also equals V
DROP. Then:
Power Dissipation
The MIC7122 output drive capability requires considering
power dissipation. If the load impedance is low, it is possible
to damage the device by exceeding the 125
°C junction
temperature rating.
On-chip power consists of two components: supply power
and output stage power. Supply power (P
S) is the product of
the supply voltage (V
S = VV+ – VV–) and supply current (IS).
Output stage power (P
O) is the product of the output stage
voltage drop (V
DROP) and the output (load) current (IOUT).
Total on-chip power dissipation is:
P
D = PS + PO
P
D = VS IS + VDROP IOUT
where:
P
D = total on-chip power
P
S = supply power dissipation
P
O = output power dissipation
V
S = VV+ – VV–
I
S = power supply current
V
DROP = VV+ – VOUT
(sourcing current)
V
DROP = VOUT – VV–
(sinking current)
The above addresses only steady state (dc) conditions. For
non-dc conditions the user must estimate power dissipation
based on rms value of the signal.
The task is one of determining the allowable on-chip power
dissipation for operation at a given ambient temperature and
power supply voltage. From this determination, one may
calculate the maximum allowable power dissipation and,
after subtracting P
S, determine the maximum allowable load
current, which in turn can be used to determine the miniumum
load impedance that may safely be driven. The calculation is
summarized below.
P
TT
D(max)
J(max)
A
JA
=
θ
JA(MSOP-8) = 200°C/W
Driving Capacitive Loads
Driving a capacitive load introduces phase-lag into the output
signal, and this in turn reduces op-amp system phase margin.
The application that is least forgiving of reduced phase
margin is a unity gain amplifier. The MIC7122 can typically
drive a 200pF capacitive load connected directly to the output
when configured as a unity-gain amplifier and powered with
a 2.2V supply. At 15V operation the circuit typically drives
500pF.
Using Large-Value Feedback Resistors
A large-value feedback resistor (> 500k
) can reduce the
phase margin of a system. This occurs when the feedback
resistor acts in conjunction with input capacitance to create
phase lag in the feedback signal. Input capacitance is usually
a combination of input circuit components and other parasitic
capacitance, such as amplifier input capacitance and stray
printed circuit board capacitance.
Figure 2 illustrates a method of compensating phase lag
caused by using a large-value feedback resistor. Feedback
capacitor C
FB introduces sufficient phase lead to overcome
the phase lag caused by feedback resistor R
FB and input
5.0V – 0.013V – 2.5V
2k
1.244mA
=
R
0.013V
0.001244A
OUT == 10 5
.
相關PDF資料
PDF描述
MIC7300YM5 TR IC OP AMP R-R IN/OUT SOT23-5
MIC860YC5 TR IC OPAMP 4MHZ 2.7V ULT LP SC70-5
MIC861BC5 TR IC OPAMP 400KHZ 2.7V ULT LP SC70
MIC862YM8 TR IC OPAMP DUAL 3MHZ 2V SOT23-8
MIC863YM8 IC OPAMP DUAL 450KHZ 2V SOT23-8
相關代理商/技術參數(shù)
參數(shù)描述
MIC7122BMM TR 功能描述:IC OP AMP DUAL R-R IN/OUT 8MSOP RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:MM8™ 標準包裝:2,500 系列:- 放大器類型:通用 電路數(shù):1 輸出類型:滿擺幅 轉換速率:0.11 V/µs 增益帶寬積:350kHz -3db帶寬:- 電流 - 輸入偏壓:4nA 電壓 - 輸入偏移:20µV 電流 - 電源:260µA 電流 - 輸出 / 通道:20mA 電壓 - 電源,單路/雙路(±):2.7 V ~ 36 V,±1.35 V ~ 18 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 供應商設備封裝:8-SO 包裝:帶卷 (TR)
MIC7122YMM 功能描述:運算放大器 - 運放 Dual CMOS Op Amp - Lead Free RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風格:SMD/SMT 封裝 / 箱體:QFN-16 轉換速度:0.89 V/us 關閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel
MIC7122YMM TR 功能描述:運算放大器 - 運放 Dual CMOS Op Amp - Lead Free RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風格:SMD/SMT 封裝 / 箱體:QFN-16 轉換速度:0.89 V/us 關閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel
MIC7122YMM-TR 功能描述:General Purpose Amplifier 2 Circuit Rail-to-Rail 8-MSOP 制造商:microchip technology 系列:MM8?? 包裝:剪切帶(CT) 零件狀態(tài):有效 放大器類型:通用 電路數(shù):2 輸出類型:滿擺幅 壓擺率:0.5 V/μs 增益帶寬積:420kHz -3db 帶寬:- 電流 - 輸入偏置:1pA 電壓 - 輸入失調:500μV 電流 - 電源:900μA 電流 - 輸出/通道:250mA 電壓 - 電源,單/雙(±):2.2 V ~ 15 V,±1.1 V ~ 7.5 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-TSSOP,8-MSOP(0.118",3.00mm 寬) 供應商器件封裝:8-MSOP 標準包裝:1
MIC7201 制造商:MICREL 制造商全稱:Micrel Semiconductor 功能描述:GainBlock⑩ Difference Amplifier Preliminary Information