3–264
Motorola Sensor Device Data
For More Information On This Product,
Go to: www.freescale.com
The following sections will detail the design issues involved
in such a system architecture, and will provide an example
circuit which has been developed as an evaluation tool for
frequency output pressure sensor applications.
DESIGN CONSIDERATIONS
Signal Conditioning
Motorola’s MPX2000 Series sensors are temperature
compensated and calibrated – i.e. – offset and full–scale span
are precision trimmed – pressure transducers. These sensors
are available in full–scale pressure ranges from 10 kPa (1.5
psi) to 200 kPa (30 psi). Although the specifications in the data
sheets apply only to a 10 V supply voltage, the output of these
devices is ratiometric with the supply voltage. At the absolute
maximum supply voltage specified, 16 V, the sensor will
produce a differential output voltage of 64 mV at the rated
full–scale pressure of the given sensor. One exception to this
is that the full–scale span of the MPX2010 (10 kPa sensor) will
be only 40 mV due to a slightly lower sensitivity. Since the
maximum supply voltage produces the most output voltage,
it is evident that even the best case scenario will require some
signal conditioning to obtain a usable voltage level.
Many different “instrumentation–type” amplifier circuits can
satisfy the signal conditioning needs of these devices.
Depending on the precision and temperature performance
demanded by a given application, one can design an amplifier
circuit using a wide variety of operational amplifier (op amp)
IC packages with external resistors of various tolerances, or
a precision–trimmed integrated instrumentation amplifier IC.
In any case, the usual goal is to have a single–ended supply,
“rail–to–rail” output (i.e. use as much of the range from ground
to the supply voltage as possible, without saturating the op
amps). In addition, one may need the flexibility of performing
zero–pressure offset adjust and full–scale pressure
calibration. The circuitry or device used to accomplish the
voltage–to–frequency conversion will determine if, how, and
where calibration adjustments are needed. See Evaluation
Board Circuit Description section for details.
Voltage–to–Frequency Conversion
Since most semiconductor pressure sensors provide a
voltage output, one must have a means of converting this
voltage signal to a frequency that is proportional to the sensor
output voltage. Assuming the analog voltage output of the
sensor is proportional to the applied pressure, the resultant
frequency will be linearly related to the pressure being
measured. There are many different timing circuits that can
perform voltage–to–frequency conversion. Most of the
“simple” (relatively low number of components) circuits do not
provide the accuracy or the stability needed for reliably
encoding
a
signal
quantity.
voltage–to–frequency (V/F) converter IC’s are commercially
available that will satisfy this function.
Fortunately,
many
Switching Time Reduction
One limitation of some V/F converters is the less than
adequate switching transition times that effect the pulse or
square–wave frequency signal. The required switching speed
will be determined by the hardware used to detect the
switching edges. The Motorola family of microcontrollers have
input–capture functions that employ “Schmitt trigger–like”
inputs with hysteresis on the dedicated input pins. In this case,
slow rise and fall times will not cause an input capture pin to
be in an indeterminate state during a transition. Thus, CMOS
logic instability and significant timing errors will be prevented
during slow transitions. Since the sensor’s frequency output
may be interfaced to other logic configurations, a designer’s
main concern is to comply with a worst–case timing scenario.
For high–speed CMOS logic, the maximum rise and fall times
are typically specified at several hundreds of nanoseconds.
Thus, it is wise to speed up the switching edges at the output
of the V/F converter. A single small–signal FET and a resistor
are all that is required to obtain switching times below 100 ns.
APPLICATIONS
Besides eliminating the need for an A/D converter, a
frequency output is conducive to applications in which the
sensor output must be transmitted over long distances, or
when the presence of noise in the sensor environment is likely
to corrupt an otherwise healthy signal. For sensor outputs
encoded as a voltage, induced noise from electromagnetic
fields will contaminate the true voltage signal. A frequency
signal has greater immunity to these noise sources and can
be effectively filtered in proximity to the MCU input. In other
words, the frequency measured at the MCU will be the
frequency transmitted at the output of a sensor located
remotely. Since high–frequency noise and 50–60 Hz line
noise are the two most prominent sources for contamination
of instrumentation signals, a frequency signal with a range in
the low end of the kHz spectrum is capable of being well
filtered prior to being examined at the MCU.
F
Freescale Semiconductor, Inc.
n
.