57
ATmega164A/PA/324A/PA/644A/PA/1284/P
2. In the example code IN and OUT instruction is used for access the I/O memory space above
the IN and OUT address limit (IN and OUT limit is 0x00 to 0x3F).
Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out
condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not
set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this
situation, the application software should always clear the Watchdog System Reset Flag
(WDRF) and the WDE control bit in the initialization routine, even if the Watchdog is not in use.
The following code example shows one assembly and one C function for changing the time-out
value of the Watchdog Timer.
Note:
1. The example code assumes that the part specific header file is included.
Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change
in the WDP bits can result in a time-out when switching to a shorter time-out period.
Assembly Code Example
WDT_Prescaler_Change:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Start timed sequence
in
r16, WDTCSR
ori
r16, (1<<WDCE) | (1<<WDE)
out
WDTCSR, r16
; --
Got four cycles to set the new values from here -
; Set new prescaler(time-out) value = 64K cycles (~0.5 s)
ldi
r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)
out
WDTCSR, r16
; --
Finished setting new values, used 2 cycles -
; Turn on global interrupt
sei
ret
void WDT_Prescaler_Change(void)
{
__disable_interrupt();
__watchdog_reset();
/* Start timed
equence */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */
WDTCSR
= (1<<WDE) | (1<<WDP2) | (1<<WDP0);
__enable_interrupt();
}