185
ATmega8515(L)
2512K–AVR–01/10
Programming the Flash
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to pro-
gram the entire Flash memory:
A. Load Command “Write Flash”
1.
Set XA1, XA0 to “10”. This enables command loading.
2.
Set BS1 to “0”.
3.
Set DATA to “0001 0000”. This is the command for Write Flash.
4.
Give XTAL1 a positive pulse. This loads the command.
B. Load Address Low byte
1.
Set XA1, XA0 to “00”. This enables address loading.
2.
Set BS1 to “0”. This selects low address.
3.
Set DATA = Address low byte ($00 - $FF).
4.
Give XTAL1 a positive pulse. This loads the address low byte.
C. Load Data Low Byte
1.
Set XA1, XA0 to “01”. This enables data loading.
2.
Set DATA = Data low byte ($00 - $FF).
3.
Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High Byte
1.
Set BS1 to “1”. This selects high data byte.
2.
Set XA1, XA0 to “01”. This enables data loading.
3.
Set DATA = Data high byte ($00 - $FF).
4.
Give XTAL1 a positive pulse. This loads the data byte.
E. Latch Data
1.
Set BS1 to “1”. This selects high data byte.
2.
Give PAGEL a positive pulse. This latches the data bytes. (See
Figure 77 for sig-
nal waveforms.)
F. Repeat B through E until the entire buffer is filled or until all data within the page is
loaded.
While the lower bits in the address are mapped to words within the page, the higher bits
that if less than eight bits are required to address words in the page (pagesize < 256),
the most significant bit(s) in the address low byte are used to address the page when
performing a page write.
G. Load Address High byte
1.
Set XA1, XA0 to “00”. This enables address loading.
2.
Set BS1 to “1”. This selects high address.
3.
Set DATA = Address high byte ($00 - $FF).
4.
Give XTAL1 a positive pulse. This loads the address high byte.
H. Program Page
1.
Set BS1 = “0”.
2.
Give WR a negative pulse. This starts programming of the entire page of data.
RDY/BSY goes low.