124
ATtiny25/45/85 [DATASHEET]
2586Q–AVR–08/2013
If ADC0 or ADC2 is selected as both the positive and negative input to the differential gain amplifier (ADC0-ADC0
or ADC2-ADC2), the remaining offset in the gain stage and conversion circuitry can be measured directly as the
result of the conversion. This figure can be subtracted from subsequent conversions with the same gain setting to
reduce offset error to below 1 LSW.
The on-chip temperature sensor is selected by writing the code “1111” to the MUX[3:0] bits in ADMUX register
when the ADC4 channel is used as an ADC input.
The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and input channel selec-
tions will not go into effect until ADEN is set. The ADC does not consume power when ADEN is cleared, so it is
recommended to switch off the ADC before entering power saving sleep modes.
The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and ADCL. By default,
the result is presented right adjusted, but can optionally be presented left adjusted by setting the ADLAR bit in
ADMUX.
If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH, to ensure that the content of the data registers belongs to the same conver-
sion. Once ADCL is read, ADC access to data registers is blocked. This means that if ADCL has been read, and a
conversion completes before ADCH is read, neither register is updated and the result from the conversion is lost.
When ADCH is read, ADC access to the ADCH and ADCL Registers is re-enabled.
The ADC has its own interrupt which can be triggered when a conversion completes. When ADC access to the
data registers is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if the result is lost.
17.4
Starting a Conversion
A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit stays high as
long as the conversion is in progress and will be cleared by hardware when the conversion is completed. If a differ-
ent data channel is selected while a conversion is in progress, the ADC will finish the current conversion before
performing the channel change.
Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is enabled by setting
the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by setting the ADC Trigger
Select bits, ADTS in ADCSRB (see description of the ADTS bits for a list of the trigger sources). When a positive
edge occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is started. This provides a
method of starting conversions at fixed intervals. If the trigger signal still is set when the conversion completes, a
new conversion will not be started. If another positive edge occurs on the trigger signal during conversion, the edge
will be ignored. Note that an Interrupt Flag will be set even if the specific interrupt is disabled or the Global Interrupt
Enable bit in SREG is cleared. A conversion can thus be triggered without causing an interrupt. However, the Inter-
rupt Flag must be cleared in order to trigger a new conversion at the next interrupt event.
Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon as the ongoing
conversion has finished. The ADC then operates in Free Running mode, constantly sampling and updating the
ADC Data Register. The first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In
this mode the ADC will perform successive conversions independently of whether the ADC Interrupt Flag, ADIF is
cleared or not.